
Python实现二分查找与bisect模块详解
其实Python的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n) 。对于大数据量,则可以用二分查找进行优化。
二分查找要求对象必须有序,其基本原理如下:
1.从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;
2.如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。
3.如果在某一步骤数组为空,则代表找不到。
二分查找也成为折半查找,算法每一次比较都使搜索范围缩小一半, 其时间复杂度为 O(logn)。
我们分别用递归和循环来实现二分查找:
接着对这两种实现进行一下性能测试:
if __name__ == "__main__":
import random
lst = [random.randint(0, 10000) for _ in xrange(100000)]
lst.sort()
def test_recursion():
binary_search_recursion(lst, 999, 0, len(lst)-1)
def test_loop():
binary_search_loop(lst, 999)
import timeit
t1 = timeit.Timer("test_recursion()", setup="from __main__ import test_recursion")
t2 = timeit.Timer("test_loop()", setup="from __main__ import test_loop")
print "Recursion:", t1.timeit()
print "Loop:", t2.timeit()
执行结果如下:
Recursion: 3.12596702576
Loop: 2.08254289627
可以看出循环方式比递归效率高。
bisect 模块
Python 有一个 bisect 模块,用于维护有序列表。bisect 模块实现了一个算法用于插入元素到有序列表。在一些情况下,这比反复排序列表或构造一个大的列表再排序的效率更高。Bisect 是二分法的意思,这里使用二分法来排序,它会将一个元素插入到一个有序列表的合适位置,这使得不需要每次调用 sort 的方式维护有序列表。
下面是一个简单的使用示例:
import bisect
import random
random.seed(1)
print'New Pos Contents'
print'--- --- --------'
l = []
for i in range(1, 15):
r = random.randint(1, 100)
position = bisect.bisect(l, r)
bisect.insort(l, r)
print'%3d %3d' % (r, position), l
输出结果:
New Pos Contents
--- --- --------
14 0 [14]
85 1 [14, 85]
77 1 [14, 77, 85]
26 1 [14, 26, 77, 85]
50 2 [14, 26, 50, 77, 85]
45 2 [14, 26, 45, 50, 77, 85]
66 4 [14, 26, 45, 50, 66, 77, 85]
79 6 [14, 26, 45, 50, 66, 77, 79, 85]
10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85]
3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]
84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]
44 4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85]
77 9 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]
1 0 [1, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]
Bisect模块提供的函数有:
bisect.bisect_left(a,x, lo=0, hi=len(a)) :
查找在有序列表 a 中插入 x 的index。lo 和 hi 用于指定列表的区间,默认是使用整个列表。如果 x 已经存在,在其左边插入。返回值为 index。
bisect.bisect_right(a,x, lo=0, hi=len(a))
bisect.bisect(a, x,lo=0, hi=len(a)) :
这2个函数和 bisect_left 类似,但如果 x 已经存在,在其右边插入。
bisect.insort_left(a,x, lo=0, hi=len(a)) :
在有序列表 a 中插入 x。和 a.insert(bisect.bisect_left(a,x, lo, hi), x) 的效果相同。
bisect.insort_right(a,x, lo=0, hi=len(a))
bisect.insort(a, x,lo=0, hi=len(a)) :
和 insort_left 类似,但如果 x 已经存在,在其右边插入。
Bisect 模块提供的函数可以分两类: bisect* 只用于查找 index, 不进行实际的插入;而 insort* 则用于实际插入。
该模块比较典型的应用是计算分数等级:
def grade(score,breakpoints=[60, 70, 80, 90], grades='FDCBA'):
i = bisect.bisect(breakpoints, score)
return grades[i]
print [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]
执行结果:
['F', 'A', 'C', 'C', 'B', 'A', 'A']
同样,我们可以用 bisect 模块实现二分查找:
def binary_search_bisect(lst, x):
from bisect import bisect_left
i = bisect_left(lst, x)
if i != len(lst) and lst[i] == x:
return i
return None
我们再来测试一下它与递归和循环实现的二分查找的性能:
Recursion: 4.00940990448
Loop: 2.6583480835
Bisect: 1.74922895432
可以看到其比循环实现略快,比递归实现差不多要快一半。
Python 著名的数据处理库 numpy 也有一个用于二分查找的函数 numpy.searchsorted, 用法与 bisect 基本相同,只不过如果要右边插入时,需要设置参数 side='right',例如:
>>> import numpy as np
>>> from bisect import bisect_left, bisect_right
>>> data = [2, 4, 7, 9]
>>> bisect_left(data, 4)
1
>>> np.searchsorted(data, 4)
1
>>> bisect_right(data, 4)
2
>>> np.searchsorted(data, 4, side='right')
2
那么,我们再来比较一下性能:
In [20]: %timeit -n 100 bisect_left(data, 99999)
100 loops, best of 3: 670 ns per loop
In [21]: %timeit -n 100 np.searchsorted(data, 99999)
100 loops, best of 3: 56.9 ms per loop
In [22]: %timeit -n 100 bisect_left(data, 8888)
100 loops, best of 3: 961 ns per loop
In [23]: %timeit -n 100 np.searchsorted(data, 8888)
100 loops, best of 3: 57.6 ms per loop
In [24]: %timeit -n 100 bisect_left(data, 777777)
100 loops, best of 3: 670 ns per loop
In [25]: %timeit -n 100 np.searchsorted(data, 777777)
100 loops, best of 3: 58.4 ms per loop
可以发现 numpy.searchsorted 效率是很低的,跟 bisect 根本不在一个数量级上。因此 searchsorted 不适合用于搜索普通的数组,但是它用来搜索 numpy.ndarray 是相当快的:
In [30]: data_ndarray = np.arange(0, 1000000)
In [31]: %timeit np.searchsorted(data_ndarray, 99999)
The slowest run took 16.04 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 996 ns per loop
In [32]: %timeit np.searchsorted(data_ndarray, 8888)
The slowest run took 18.22 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 994 ns per loop
In [33]: %timeit np.searchsorted(data_ndarray, 777777)
The slowest run took 31.32 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 990 ns per loop
numpy.searchsorted 可以同时搜索多个值:
>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side='right')
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者使用python能有一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07