
Python实现二分查找与bisect模块详解
其实Python的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n) 。对于大数据量,则可以用二分查找进行优化。
二分查找要求对象必须有序,其基本原理如下:
1.从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;
2.如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。
3.如果在某一步骤数组为空,则代表找不到。
二分查找也成为折半查找,算法每一次比较都使搜索范围缩小一半, 其时间复杂度为 O(logn)。
我们分别用递归和循环来实现二分查找:
接着对这两种实现进行一下性能测试:
if __name__ == "__main__":
import random
lst = [random.randint(0, 10000) for _ in xrange(100000)]
lst.sort()
def test_recursion():
binary_search_recursion(lst, 999, 0, len(lst)-1)
def test_loop():
binary_search_loop(lst, 999)
import timeit
t1 = timeit.Timer("test_recursion()", setup="from __main__ import test_recursion")
t2 = timeit.Timer("test_loop()", setup="from __main__ import test_loop")
print "Recursion:", t1.timeit()
print "Loop:", t2.timeit()
执行结果如下:
Recursion: 3.12596702576
Loop: 2.08254289627
可以看出循环方式比递归效率高。
bisect 模块
Python 有一个 bisect 模块,用于维护有序列表。bisect 模块实现了一个算法用于插入元素到有序列表。在一些情况下,这比反复排序列表或构造一个大的列表再排序的效率更高。Bisect 是二分法的意思,这里使用二分法来排序,它会将一个元素插入到一个有序列表的合适位置,这使得不需要每次调用 sort 的方式维护有序列表。
下面是一个简单的使用示例:
import bisect
import random
random.seed(1)
print'New Pos Contents'
print'--- --- --------'
l = []
for i in range(1, 15):
r = random.randint(1, 100)
position = bisect.bisect(l, r)
bisect.insort(l, r)
print'%3d %3d' % (r, position), l
输出结果:
New Pos Contents
--- --- --------
14 0 [14]
85 1 [14, 85]
77 1 [14, 77, 85]
26 1 [14, 26, 77, 85]
50 2 [14, 26, 50, 77, 85]
45 2 [14, 26, 45, 50, 77, 85]
66 4 [14, 26, 45, 50, 66, 77, 85]
79 6 [14, 26, 45, 50, 66, 77, 79, 85]
10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85]
3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]
84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]
44 4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85]
77 9 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]
1 0 [1, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]
Bisect模块提供的函数有:
bisect.bisect_left(a,x, lo=0, hi=len(a)) :
查找在有序列表 a 中插入 x 的index。lo 和 hi 用于指定列表的区间,默认是使用整个列表。如果 x 已经存在,在其左边插入。返回值为 index。
bisect.bisect_right(a,x, lo=0, hi=len(a))
bisect.bisect(a, x,lo=0, hi=len(a)) :
这2个函数和 bisect_left 类似,但如果 x 已经存在,在其右边插入。
bisect.insort_left(a,x, lo=0, hi=len(a)) :
在有序列表 a 中插入 x。和 a.insert(bisect.bisect_left(a,x, lo, hi), x) 的效果相同。
bisect.insort_right(a,x, lo=0, hi=len(a))
bisect.insort(a, x,lo=0, hi=len(a)) :
和 insort_left 类似,但如果 x 已经存在,在其右边插入。
Bisect 模块提供的函数可以分两类: bisect* 只用于查找 index, 不进行实际的插入;而 insort* 则用于实际插入。
该模块比较典型的应用是计算分数等级:
def grade(score,breakpoints=[60, 70, 80, 90], grades='FDCBA'):
i = bisect.bisect(breakpoints, score)
return grades[i]
print [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]
执行结果:
['F', 'A', 'C', 'C', 'B', 'A', 'A']
同样,我们可以用 bisect 模块实现二分查找:
def binary_search_bisect(lst, x):
from bisect import bisect_left
i = bisect_left(lst, x)
if i != len(lst) and lst[i] == x:
return i
return None
我们再来测试一下它与递归和循环实现的二分查找的性能:
Recursion: 4.00940990448
Loop: 2.6583480835
Bisect: 1.74922895432
可以看到其比循环实现略快,比递归实现差不多要快一半。
Python 著名的数据处理库 numpy 也有一个用于二分查找的函数 numpy.searchsorted, 用法与 bisect 基本相同,只不过如果要右边插入时,需要设置参数 side='right',例如:
>>> import numpy as np
>>> from bisect import bisect_left, bisect_right
>>> data = [2, 4, 7, 9]
>>> bisect_left(data, 4)
1
>>> np.searchsorted(data, 4)
1
>>> bisect_right(data, 4)
2
>>> np.searchsorted(data, 4, side='right')
2
那么,我们再来比较一下性能:
In [20]: %timeit -n 100 bisect_left(data, 99999)
100 loops, best of 3: 670 ns per loop
In [21]: %timeit -n 100 np.searchsorted(data, 99999)
100 loops, best of 3: 56.9 ms per loop
In [22]: %timeit -n 100 bisect_left(data, 8888)
100 loops, best of 3: 961 ns per loop
In [23]: %timeit -n 100 np.searchsorted(data, 8888)
100 loops, best of 3: 57.6 ms per loop
In [24]: %timeit -n 100 bisect_left(data, 777777)
100 loops, best of 3: 670 ns per loop
In [25]: %timeit -n 100 np.searchsorted(data, 777777)
100 loops, best of 3: 58.4 ms per loop
可以发现 numpy.searchsorted 效率是很低的,跟 bisect 根本不在一个数量级上。因此 searchsorted 不适合用于搜索普通的数组,但是它用来搜索 numpy.ndarray 是相当快的:
In [30]: data_ndarray = np.arange(0, 1000000)
In [31]: %timeit np.searchsorted(data_ndarray, 99999)
The slowest run took 16.04 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 996 ns per loop
In [32]: %timeit np.searchsorted(data_ndarray, 8888)
The slowest run took 18.22 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 994 ns per loop
In [33]: %timeit np.searchsorted(data_ndarray, 777777)
The slowest run took 31.32 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 990 ns per loop
numpy.searchsorted 可以同时搜索多个值:
>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side='right')
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者使用python能有一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16