京公网安备 11010802034615号
经营许可证编号:京B2-20210330
爬取张佳玮138w+知乎关注者后,我做了数据可视化分析
本项目仅为个人练手,若有冒犯张公子或其他人之处,在此先致以歉意,爬取的数据不做公开。另外行文时间问题,关注张公子的人数略有变化,很多数据也都有所变化,请批判性地看待可视化结果。
一、前言
作为本专栏第一篇文章,先介绍下小背景,即为什么爬知乎第一大V张公子的138w+关注者信息?
其实之前也写过不少小爬虫,按照网上各种教程实例去练手,“不可避免”的爬过妹子图、爬过豆瓣Top250电影等等;也基于自身的想法,在浙大120周年校庆前,听闻北美帝国大厦首次给大陆学校亮灯,于是爬取2016-2017年官网上每日的亮灯图并用python的PIL库做了几个小logo,算是一名吃瓜群众自发的庆贺行为;
也因为喜欢鲁迅的作品,爬过在线鲁迅全集的全部文章标题和链接;另外听说太祖的某卷书是禁书,于是顺带也爬了遍毛选;还帮老同学在某票据网站下线前爬了大部分机构、人员信息,说是蛮值钱,然而也还在留着落灰......
再是知道百度Echarts开源的可视化网站里面的图很酷炫,比如使我着迷的:微博签到数据点亮中国,于是想着可以爬取微博大明星、小鲜肉的粉丝的居住地,然后搞搞怎么画出全国乃至全球分布情况。但发现几年前微博就限制只能查看200左右粉丝数(具体忘了),蛮扫兴的,于是将目光转向了知乎......
而既然要爬,那就爬关注人数最多的张公子吧,数据量也大,这方面是之前小项目所不及的,此前也看过不少爬知乎数据与分析的文章,因此也想练练手,看看大量访问与获取数据时会不会遇到什么封IP的反爬措施,以及数据可视化能搞成什么样。
不过此文在爬虫部分不做过多展开,看情况后续再另写一文。思路如下:抓包获取张佳玮主页关注者api,然后改变网址中offset参数为20的倍数,一直翻页直到获取138w+关注者信息,其中返回的json数据主要有:关注者的昵称、主页id(即url_token)、性别、签名、被关注人数等,也就是说需要访问所有主页id,才能获取更多信息(个人主页api:以黄继新为例):居住地、所在行业、职业经历、教育经历、获赞数、感谢数、收藏数等等。鉴于还不怎么会多进程爬取,如果把所有id再爬一遍会非常耗时间,于是筛选被关注数100+的id,发现只剩了4.1w+,之后较完整提取了这部分的信息,后续可视化也多基于此。
二、数据可视化
1、关注人数
大V总是少数的,而小透明到底有多少、分布情况如何呢?将关注人数划分成不同区间,绘制成如下金字塔图:
作为一只小透明,在此过程中发现自己处于前2w的位置,即图中红色区域,还是蛮吃惊的。上文已提到100+关注就超过了134w的用户,而1k+、1w+、10w+就越来越接近塔尖,越来越接近张公子的所在,看上图10w+以上的区域,如同高耸入云,渺然不可见,“乱山合沓,空翠爽肌,寂无人行,止有鸟道”,令小透明很是神往。
上升之路虽然崎岖,但也同样说明只要多增几个关注,就胜过了数以万计的用户,这对于有志于成为大V的人,或许能在艰难的前行之路上,靠此数据透露的信息,拾得些许信心。
细看底部的区间,0关注有40.2w+,1-10关注有76.6w+,区分度已赫然形成,但小透明可能感受不出,那怕有几百的关注,何尝不会觉得自己依旧是个小透明呢?有谁会相信斩获10人关注,就超过了100w+的用户,数据能告知人经验之外的事实,在此可见一斑。当然知乎大量用户涌入且多数人并不产生优质或有趣的回答,也是一二原因。
继续看100+以上的数据,底部占比依旧明显,塔尖依然很小。
2、性别情况
接着对100+关注人群的性别组成进行分析,发现男女比例基本维持在2:1,与138w+用户的男女比例差别不大。当然10w+关注由于人数较少,比例超过3:1,是否能得出男性在这方面更为优秀就不得而知了。
3、10w+大V
前文已多次提到10w+大V,那么这190人里到底都有谁呢?这里以关注人数为权重,生成词云如下:
大家上知乎的话应该也有关注一些大V,许多名字应该并不陌生,比如马伯庸、动机在杭州、葛巾、朱炫、丁香医生等等,当然也会发现并不是所有大V都关注了张公子,哪怕他是知乎第一人,目前已交出了3026个回答,135个知乎收录回答的傲人成绩(据说也是豆瓣和虎扑第一人)。
4、居住地分布
终于到了我最初开始这个项目时,最想获取的的信息了。虽然由于爬取效率而筛选掉了100关注以下的id共134w,数据量方面不如标题所示的那么多,略有遗憾,但其实真的拿到4.1w+条较优质数据时,发现处理起来也并不容易。
比如这里的居住地信息,有乱填水星、火星、那美克星,也有填国家、省份、县市、街道格式不一的,还有诸如老和山之类外行人不明白的“哑谜”等等,数据之脏令人头疼,且纯文本的数据又不像数字类可以筛选、排序,还没想到好的方式应对。再者Echarts官网虽然有不少可以套用的模板,但有很多地方的经纬度需要重新获取,这样就在数据处理和地图上定位有两处难题需要解决。
由于第一次处理这类数据并可视化,第一次用Echarts就打算画这个酷炫的地图,因此最终先缩小数据量,还是以1w+大V的数据来可视化,目前先完成国内分布情况,以后看情况再扩大数据量和绘制全球分布情况。
其中出现次数排名前几的城市依次为:北京 360,上海 183,深圳 55,杭州 52,广州 47,成都 26,南京 20......应该算是意料之中的。考虑到并不是每个人对这些点所代表的城市都熟悉,加上城市名,效果如下,重叠较为严重,显示效果不够好,仍需解决。
5、Top20 系列
接下来分别对所在行业、职业经历、教育经历等进行分析,结果如下(注:用户有多条职业经历或教育经历的,仅爬取了最新的一条数据):
学校方面几乎全为985、211高校,当然拿得出手的会乐于写上,略微差些的可能不会填写,而且涌入用户多了后,这类数据也就只是调侃知乎人人都是985高校,年薪百万的点了。所在行业方面,互联网遥遥领先,计算机软件、金融、高等教育位居前四。
Top20 公司中BAT、网易、华为、小米科技、美团网以及谷歌、Facebook、微软等大厂都悉数在列。再看Top20 职业里除了各种名号的程序员、产品经理、运营等互联网职业,创始人、CEO等占据前排,不可谓不令人大惊从早到晚失色。
6、认证信息
原本只知道博士可以提供信息得到认证,知乎也会给予其回答更好的显示途径,使其更容易成长为大V,以此作为对高学历人群、优质用户的奖励。
此次抓取的100+关注4.1w+条数据中有208条认证信息。除却各种专业的博士、博士后外,还有37家公司、机构,9条医师,11条教授/讲师/研究员,13条CFA、CPA持证人或工程师、建筑师,以及28条其他类:副总裁、创始人、记者、律师、WCG2005-2006魔兽争霸项目世界冠军、职业自行车手、主持人、作家、歌手等等。看来还是有不少优质用户可以后续去了解下的。
7、优秀回答者
除了认证信息外,优秀回答者这是鉴别某用户是否为优质用户,是否值得关注的一个重要指标。包含张佳玮在内,共有468位优秀回答者,涉及257个话题,共出现768人次优秀回答者标签。
而所有优秀回答者贡献的回答和知乎收录回答情况如下:
最右上角的便是张佳玮的贡献情况,令人望尘莫及。也有不少用户贡献了上千个回答,可以说是非常高产。但大部分用户回答数<1000,收录数<50。密集区域放大后如图:
有不少数据收录回答为0,因为还不知道知乎优秀回答者的评判标准,所以此处还需进一步了解。另外这些数据点,对应的加上一些大V名字可能显示起来能好,但一直在摸索,还不得要领。
三、小结
本项目是个人第一次百万级数据的爬取,当然由于爬取效率方面需要改进,所以详细用户信息选择性的只爬了100+关注人数共4.1w+的id。另外也是第一次数据可视化,从完全不懂Echarts的各种参数,硬刚配置项,到勉强获得了上述还算能看的一些数据图,不少地方还需进一步学习、改进,以求获得更合乎要求的、理想的、自定义的可视化图。
另外,除却上述数据外,还有点赞数、感谢数、收藏数、关注数和被关注数、签名、个人简介等等数据并未处理,但基本想要获取的图都得到了,算是完成了此项目,也学到了很多东西。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27