京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学在明年呈现哪四大趋势?物联网和未来医疗是香饽饽
大数据技术的崛起
在过去一年,我们已经见证了大数据技术惊人的成长,但随着大数据技术在企业界中被广泛接受,下一年留给大数据技术的预算会快速增加。大多数企业已经确认需要在业务的数据方向上进行改进,这转而会需要更多的数据科学家来处理企业需要检索的大量额外数据。
如果你在追求一份数据科学领域的职业,那么有关大数据和数据框架的知识是必备的。你可以特别注意一下以下几个平台:Apache Hadoop, HDFS, Hbase, Spark, Storm, Solr 和 Kafka。
数据科学从业资格的变化
虽然 Elon Musk认为机器学习正在“召唤恶魔”,但是它仍将继续发展。Amazon, Facebook 和 Google都在最近几年加入到了人工智能的竞赛中。在2017年,越来越多的企业会招募最顶尖的机器学习数据科学家。
但同时,工作岗位的竞争也变得更加激烈。在越来越多的大学将 AI 列入课程要求的背景下,从2017年开始,机器学习会成为数据科学行业入门的必备条件。如果你想在竞争中取得先机,有不少的AI和机器学习的认证课程供你选择。虽然有一些课程的价格达到1万美元,不过在 Coursera 或者 edX 上也有为数不少免费或低价的培训课程。
如果你拥有很强的科技和编程能力,也能够帮助你在数据科学领域获得一席之地,尤其是 R 和 Python 语言。同时,SAS 和 MATLAB 的经验自然也是加分项。
而且,你需要能够自如地使用关系型数据库,所以SQL也是一项非常重要的技能。在2015年一项综合了 3500 个 Linkedin 招聘广告的研究中,SQL被列为最重要的技能。另外,Hadoop, Python和 Java 也同样流行。
物联网和数据科学的融合
虽然存在一些关键的不同点,但是数据科学和物联网经常被视为一个硬币的两面。数据科学家会更多地需要从设备中读取实时数据,进行复杂的分析或以此作出决策。在这样的背景下,这两个行业在明年将会有更深的融合。
在现实世界中,这一切是怎么实现的? 想象一下这样的情景:在不远的将来,你不再需要钥匙来打开你家的大门。当你走向大门的时候,它会感知到你并且自动为你打开门锁。当你离开家的那一刻,智能家庭会关闭所有非必需的耗能设备,来为房主节省花费。
这样的情景好像只能在星际迷航的“企业号”上才能见到,但是我们应该会在2017年就能看到雏形,因此,你需要确保你有足够的技能参与到这样的项目中去。
同 AI 一样,为物联网服务的数据科学会要求你可以自如地使用各种设备的 RIL(无线界面层),进行边缘数据处理,数据处理和深度学习。
数据科学驱动的医疗保健行业
在改善流行病结果和预测病人行为方面,数据科学已经证明了它的价值。
在2015年,数据科学家帮助预测了西尼罗河病毒在美国的进一步爆发,准确率高达85%。
在2016年早些时候,一个科学家团队开发了一套可以预测蝙蝠携带埃博拉病毒几率的模型。
在这样的背景下,2017年内我们可以期待数据科学在医疗保健行业方面取得长足的发展。
随着电子医疗保健档案应用的崛起,可以为我们所用的数据量已经达到了历史最高水平。虽然大量的数据同时具有好处和不足,但在2017年,还有很多获利机会留给那些尝试解码这些数据的科学家们。如果你正在寻求加入一个新兴领域的话,数据科学是一个很好的机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26