京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中关于字符串对象的一些基础知识
Python的字符串被划分为不可变序列的类别,意味着这些字符串所包含的字符存在从左至右的位置顺序,并且它们不可以在本地进行修改。
基本操作
字符串可以通过+操作符进行合并,可以使用*运算符进行重复。

字符串内部的一个反斜杠“\”可允许把字符串放于多行。
>>>str = "aaa\
....bbb\
....ccc\
....ddd"
>>>str
aaabbbcccddd
索引和分片
在Python中,字符串中的字符是通过索引提取的。
分片X[I:J],表示“取出在X中从偏移量为I,直到但不包括偏移量为J的内容”。结果就是返回一个新的对象。
在一个分片中,左边界默认为0,右边界默认为分片序列的长度。
S = 'Spam'
>>>S[1:]
'pam'
>>>S
'Spam'
>>>S[:3]
'Spa'
>>>S[:-1]
'Spa'
>>>S[:]
'Spam'
S[:]实现了一个完全的顶层的序列对象的拷贝-一个有相同值,但是是不同内存片区的对象。
X[I:J:K]表示“索引x对象中的元素,从偏移为I直到偏移为J-1,每隔K元素索引一次“,第三个限制K,默认为1,表示步进。
也可以使用负数作为步进,S[::-1]的作用实际上是将序列进行发转。
>>>S = 'hello'
>>>S[::-1]
'olleh'
字符串转化工具
int函数将字符串转换为数字,str函数将数字转换为字符串表达形式。repr函数也能够将一个对象转换为其字符串形式,然后这些返回的对象将作为代码的字符串,可以重新创建对象。
不可变性
字符串属于不可变序列,即不能在原地修改一个字符串,例如,给一个索引进行赋值。若要改变一个字符串,需要利用合并,分片这样的工具来建立并赋值给一个新的字符串,倘若必要的话,还要将这个结果赋值给字符串最初的变量名。
>>>S = 'spam'
>>>S[0] = "x"
#不允许修改S的值
>>>S = S + "SPAM"
>>>S
'spamSPAM'
>>>S = 'splot'
>>>S = S.replace('pl', 'plmal')
>>>S
'splmalot'
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07