
Python中关于字符串对象的一些基础知识
Python的字符串被划分为不可变序列的类别,意味着这些字符串所包含的字符存在从左至右的位置顺序,并且它们不可以在本地进行修改。
基本操作
字符串可以通过+操作符进行合并,可以使用*运算符进行重复。
字符串内部的一个反斜杠“\”可允许把字符串放于多行。
>>>str = "aaa\
....bbb\
....ccc\
....ddd"
>>>str
aaabbbcccddd
索引和分片
在Python中,字符串中的字符是通过索引提取的。
分片X[I:J],表示“取出在X中从偏移量为I,直到但不包括偏移量为J的内容”。结果就是返回一个新的对象。
在一个分片中,左边界默认为0,右边界默认为分片序列的长度。
S = 'Spam'
>>>S[1:]
'pam'
>>>S
'Spam'
>>>S[:3]
'Spa'
>>>S[:-1]
'Spa'
>>>S[:]
'Spam'
S[:]实现了一个完全的顶层的序列对象的拷贝-一个有相同值,但是是不同内存片区的对象。
X[I:J:K]表示“索引x对象中的元素,从偏移为I直到偏移为J-1,每隔K元素索引一次“,第三个限制K,默认为1,表示步进。
也可以使用负数作为步进,S[::-1]的作用实际上是将序列进行发转。
>>>S = 'hello'
>>>S[::-1]
'olleh'
字符串转化工具
int函数将字符串转换为数字,str函数将数字转换为字符串表达形式。repr函数也能够将一个对象转换为其字符串形式,然后这些返回的对象将作为代码的字符串,可以重新创建对象。
不可变性
字符串属于不可变序列,即不能在原地修改一个字符串,例如,给一个索引进行赋值。若要改变一个字符串,需要利用合并,分片这样的工具来建立并赋值给一个新的字符串,倘若必要的话,还要将这个结果赋值给字符串最初的变量名。
>>>S = 'spam'
>>>S[0] = "x"
#不允许修改S的值
>>>S = S + "SPAM"
>>>S
'spamSPAM'
>>>S = 'splot'
>>>S = S.replace('pl', 'plmal')
>>>S
'splmalot'
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23