京公网安备 11010802034615号
经营许可证编号:京B2-20210330
骑行在华盛顿 针对320万次共享单车骑行数据的分析
共享单车的蓬勃发展,让人们的短途出行更加方便,这种绿色低碳,又时尚健康的新型出行方式已成为城市“主旋律”。那么在国外共享单车又是怎样一番情景呢?
华盛顿正在变成一个适宜自行车出行的城市。主要道路上都设有自行车道,而且共享单车系统非常成功。最近Capital Bikeshare发布了他们每个季度的骑行数据。我对前四个季度的数据进行了抓取和清理,并发布在我的GitHub中。
几周前,我偶然看到Austin Wehrwein关于芝加哥的自行车共享系统的帖子,这个帖子很棒,看完后我立即想进行同样的尝试。通过热图可以清楚的看到,一整年内共享单车每天的使用情况。幸运的是,Austin Wehrwein提供了代码,从而我能够对华盛顿地区的骑行数据进行分析。
Austin Wehrwein原贴链接:
http://austinwehrwein.com/data-visualization/heatmaps-with-divvy-data/
华盛顿特区320万人次骑行数据热图: 2015年7月1日-2016年6月30日
每日骑行数据的热图代码:
library(ggplot2)
ggplot(bike_day_heatmap, aes(x = week, y = days, fill = n)) +
scale_fill_viridis(name="# of Rides", option = "C",
limits = c(0, max(bike_day_heatmap$n))) +
geom_tile(color = "white", size = 0.4) +
scale_x_continuous(expand = c(0, 0), breaks = seq(1, 52, length = 12),
labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))+
theme_minimal() +
theme(legend.position = "bottom") +
labs(title = "DC Bikeshare: Heatmap of Rides taken per Day",
x = "Month", y = "Day of the Week",
subtitle = "July 1, 2015 to June 30, 2016",
caption = "Data from: https://s3.amazonaws.com/capitalbikeshare-data/index.html")
从2015年7月1日至2016年6月30日,共有320万次骑行。由于数据不足一整年,所以我决定不按照Andrew的将数据按年区分。
在热图中我注意到了一些趋势:
·华盛顿的骑行季节比芝加哥稍长。其中天气占很大一部分的原因,因为华盛顿的3月和9月一般比较温暖,而在芝加哥就不是如此了。
·有两个蓝色单元格在热图中很显眼(意味着低使用率)。关于其中的原因估计也是天气。2016年4月29日,天气异常寒冷,且有小雨。2016年9月9日则比往年此时要热,达到在96华氏度(约为35.5摄氏度)。
·2016年3月26日(星期六)的骑行数量最多,为14,116人次。这是樱花盛开后的一天。虽然在全年中星期六的骑行总数较少,但樱花却带来了显著的骑行高峰。
·在一周中,星期六和星期天的骑行数相对要少。就个人而言,我在工作日会将自行车用作通勤的选择之一,看来其他人也是如此。樱花星期六则是一个异常值。
·骑行次数最少的为2016年2月15日(星期一),仅为501人次。天气发挥了很大的作用:当天气温低且下雨。
看到这个热图我不禁开始思考更多的问题。我不仅关注共享单车每天的使用情况,同时也想了解每天不同时段的骑行数据。当我使用自行车上下班上班时,我经常会发现,当我到达存放自行车的车站时,车站几乎都是空的。这很令人沮丧。接着我又创建了一个热图,显示每天不同时段的骑行数据。
华盛顿: 320万次骑行数据的热图
对于生活在华盛顿的人群来说,对这个热图的结果应该不会感到惊讶。
早上8点至8点55分,以及下午5点到5点59分为上下班期间,骑行数量达到高峰。
然而,星期五甚至周四下班后,相对星期一至星期三共享单车的使用量并不高。这段时间人们更多在家办公吗?或者他们会选择走路、乘坐地铁、坐公交,与同事到酒吧聚聚呢?
周末骑行的时间一般分布在上午11点至晚上8点。我尝试通过用户的帐户类型进行分析。使用共享单车服务,你可以按年租,类型为“注册”用户;或按天支付,类型为“临时”用户。临时用户的数量对总数据影响并不大。临时用户会在周末这些时间用车,但是比起使用自行车通勤的注册用户,总体数量是微不足道的。在320万次骑行数据中,临时用户占665,822人次,而注册用户为2,591,279人次。
每小时骑行数据的热图代码:
library(ggplot2)
ggplot(bike_time_heatmap, aes(x = days, y = start.hour, fill = n)) +
scale_fill_viridis(name="# of Rides", option = "C",
limits = c(0, max(bike_time_heatmap$n))) +
geom_tile(color = "white", size = 0.4) +
theme_minimal() +
scale_y_reverse() +
labs(title = "DC Bikeshare: Heatmap of Rides taken per Hour",
x = "Day of the Week", y = "Starting Hour",
subtitle = "July 1, 2015 to June 30, 2016",
caption = "Data from: https://s3.amazonaws.com/capitalbikeshare-data/index.html")
当然,这也让我思考更多的问题。如果将小时热图分解成每15分钟,每5分钟,甚至每1分钟会得到什么结果?哪些车站在什么时间使用率最高?
当中所有代码都可以在我的GitHub主页找到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08