
骑行在华盛顿 针对320万次共享单车骑行数据的分析
共享单车的蓬勃发展,让人们的短途出行更加方便,这种绿色低碳,又时尚健康的新型出行方式已成为城市“主旋律”。那么在国外共享单车又是怎样一番情景呢?
华盛顿正在变成一个适宜自行车出行的城市。主要道路上都设有自行车道,而且共享单车系统非常成功。最近Capital Bikeshare发布了他们每个季度的骑行数据。我对前四个季度的数据进行了抓取和清理,并发布在我的GitHub中。
几周前,我偶然看到Austin Wehrwein关于芝加哥的自行车共享系统的帖子,这个帖子很棒,看完后我立即想进行同样的尝试。通过热图可以清楚的看到,一整年内共享单车每天的使用情况。幸运的是,Austin Wehrwein提供了代码,从而我能够对华盛顿地区的骑行数据进行分析。
Austin Wehrwein原贴链接:
http://austinwehrwein.com/data-visualization/heatmaps-with-divvy-data/
华盛顿特区320万人次骑行数据热图: 2015年7月1日-2016年6月30日
每日骑行数据的热图代码:
library(ggplot2)
ggplot(bike_day_heatmap, aes(x = week, y = days, fill = n)) +
scale_fill_viridis(name="# of Rides", option = "C",
limits = c(0, max(bike_day_heatmap$n))) +
geom_tile(color = "white", size = 0.4) +
scale_x_continuous(expand = c(0, 0), breaks = seq(1, 52, length = 12),
labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))+
theme_minimal() +
theme(legend.position = "bottom") +
labs(title = "DC Bikeshare: Heatmap of Rides taken per Day",
x = "Month", y = "Day of the Week",
subtitle = "July 1, 2015 to June 30, 2016",
caption = "Data from: https://s3.amazonaws.com/capitalbikeshare-data/index.html")
从2015年7月1日至2016年6月30日,共有320万次骑行。由于数据不足一整年,所以我决定不按照Andrew的将数据按年区分。
在热图中我注意到了一些趋势:
·华盛顿的骑行季节比芝加哥稍长。其中天气占很大一部分的原因,因为华盛顿的3月和9月一般比较温暖,而在芝加哥就不是如此了。
·有两个蓝色单元格在热图中很显眼(意味着低使用率)。关于其中的原因估计也是天气。2016年4月29日,天气异常寒冷,且有小雨。2016年9月9日则比往年此时要热,达到在96华氏度(约为35.5摄氏度)。
·2016年3月26日(星期六)的骑行数量最多,为14,116人次。这是樱花盛开后的一天。虽然在全年中星期六的骑行总数较少,但樱花却带来了显著的骑行高峰。
·在一周中,星期六和星期天的骑行数相对要少。就个人而言,我在工作日会将自行车用作通勤的选择之一,看来其他人也是如此。樱花星期六则是一个异常值。
·骑行次数最少的为2016年2月15日(星期一),仅为501人次。天气发挥了很大的作用:当天气温低且下雨。
看到这个热图我不禁开始思考更多的问题。我不仅关注共享单车每天的使用情况,同时也想了解每天不同时段的骑行数据。当我使用自行车上下班上班时,我经常会发现,当我到达存放自行车的车站时,车站几乎都是空的。这很令人沮丧。接着我又创建了一个热图,显示每天不同时段的骑行数据。
华盛顿: 320万次骑行数据的热图
对于生活在华盛顿的人群来说,对这个热图的结果应该不会感到惊讶。
早上8点至8点55分,以及下午5点到5点59分为上下班期间,骑行数量达到高峰。
然而,星期五甚至周四下班后,相对星期一至星期三共享单车的使用量并不高。这段时间人们更多在家办公吗?或者他们会选择走路、乘坐地铁、坐公交,与同事到酒吧聚聚呢?
周末骑行的时间一般分布在上午11点至晚上8点。我尝试通过用户的帐户类型进行分析。使用共享单车服务,你可以按年租,类型为“注册”用户;或按天支付,类型为“临时”用户。临时用户的数量对总数据影响并不大。临时用户会在周末这些时间用车,但是比起使用自行车通勤的注册用户,总体数量是微不足道的。在320万次骑行数据中,临时用户占665,822人次,而注册用户为2,591,279人次。
每小时骑行数据的热图代码:
library(ggplot2)
ggplot(bike_time_heatmap, aes(x = days, y = start.hour, fill = n)) +
scale_fill_viridis(name="# of Rides", option = "C",
limits = c(0, max(bike_time_heatmap$n))) +
geom_tile(color = "white", size = 0.4) +
theme_minimal() +
scale_y_reverse() +
labs(title = "DC Bikeshare: Heatmap of Rides taken per Hour",
x = "Day of the Week", y = "Starting Hour",
subtitle = "July 1, 2015 to June 30, 2016",
caption = "Data from: https://s3.amazonaws.com/capitalbikeshare-data/index.html")
当然,这也让我思考更多的问题。如果将小时热图分解成每15分钟,每5分钟,甚至每1分钟会得到什么结果?哪些车站在什么时间使用率最高?
当中所有代码都可以在我的GitHub主页找到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25