京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,如何让学习更高效
说起“让学习更高效”这个话题,我们不难发现这其实是个老话题。
懂点教育的人会都知道,“有效,还是无效;低效,还是高效”是搞课堂教学的人历来就关注的永恒的主题。一堂课先生讲来抑扬顿挫,声音圆润洪亮,但一下课便“心生苍茫”,这是一堂低效甚至无效的课。
真正的高效的课堂自然会让“弟子”,伸手可触摸到知识与技能的纹理,俯仰可见“豁然的天地”。
是进还是退,是快走还是慢走,是发展还是巩固,是提高还是维持,是引导还是告知,是学生做还是教师讲,是活跃还是平静,是说还是写?真正追求高效的课堂教学往往处于这样一种两难境地。我的业师、人教社课程评价专家李静纯先生曾举过这样一个例子说明这种“两难境地”:一个厨师在烹鲜鱼时,是肉嫩一点,还是老一点?水加得多一点,还是少一点?但厨师的经验是,恰到好处,才是真正的好处。
先生还举例说,屈原的弟子宋玉在写赋描述美人的时候曾说“增一分则太长,减一分则太短”。如何恰到好处?这的确应该是搞课堂教学的人思考和研究的问题,然,在K12教培领域很少甚至几乎没有一家教育机构会从这个角度去思考和研究这一重要的教育现象。
我们平常大多都会听到这样的发声:一站式在线学习让学习成绩提高、个性化教育将迈入“智慧时代”、科技让教育更高效、打造K12在线教育的学习闭环,做有深度的教育、大数据教育让教育更独特、更行之有效……
不知为什么,笔者很不能苟同“互联网+”这样一种貌似很潮的说法,似乎“互联网”就是一方硕大的神圣,任何领域只有投入到它的怀抱才有新生,才有高效的状态。我并不是说“互联网”技术不重要,只是觉得我们在“喋喋不休”中放大了技术对于教育的作用,而在教育领域永远是“教育+”的关系,不谈教育本身的理念、环境、设计、实施和评价所带来的课堂教学高效,再怎么大谈特谈技术的威猛与豪华,都是毫无意义的事情。显然,离开深邃、复杂教育本身的技术,什么都不是。教学的过程有它自己的顺序,有它发展的逻辑,而有效的教学也往往发生在有效发展的各个特定的时期之内(学习的敏感期),而这些并非一项技术就能全部包揽和实现的。
另外,如今说起互联网,必提“大数据”,似乎不这样说就OUT了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。当下K12教培业创始人皆习惯用“大数据”来表达或阐述教育,认为大数据驱动下的教育才会更加高效。
不过,文新学堂创始人叶德文认为,由于大数据理论过于依靠数据的汇集,一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因数据本身的问题,而做出错误的预测和决策,这样的大数据不可能带来教育的高效。“大数据时代的到来,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。”
一堂充满活力、隐喻、互动的课堂场域,仍然是中国传统教育的主流,我们可以大声地谈借助技术手段推动教育的话题,但仍期待谈谈究竟什么是教育
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10