京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中几种操作字符串的方法的介绍
这篇文章主要介绍了详解Python中几种操作字符串的方法,字符串的操作是Python学习中最基础的基础知识,需要的朋友可以参考下
string的其他操作以及说明(参考):
在python有各种各样的string操作函数。在历史上string类在python中经历了一段轮回的历史。在最开始的时候,python有一个专门的string的module,要使用string的方法要先import,但后来由于众多的python使用者的建议,从python2.0开始, string方法改为用S.method()的形式调用,只要S是一个字符串对象就可以这样使用,而不用import。同时为了保持向后兼容,现在的 python中仍然保留了一个string的module,其中定义的方法与S.method()是相同的,这些方法都最后都指向了用S.method ()调用的函数。要注意,S.method()能调用的方法比string的module中的多,比如isdigit()、istitle()等就只能用 S.method()的方式调用。
对一个字符串对象,首先想到的操作可能就是计算它有多少个字符组成,很容易想到用S.len(),但这是错的,应该是len(S)。因为len()是内置函数,包括在__builtin__模块中。python不把len()包含在string类型中,乍看起来好像有点不可理解,其实一切有其合理的逻辑在里头。len()不仅可以计算字符串中的字符数,还可以计算list的成员数,tuple的成员数等等,因此单单把len()算在string里是不合适,因此一是可以把len()作为通用函数,用重载实现对不同类型的操作,还有就是可以在每种有len()运算的类型中都要包含一个len()函数。 python选择的是第一种解决办法。类似的还有str(arg)函数,它把arg用string类型表示出来。
字符串中字符大小写的变换:
S.lower() #小写
S.upper() #大写
S.swapcase() #大小写互换
S.capitalize() #首字母大写
String.capwords(S)
#这是模块中的方法。它把S用split()函数分开,然后用capitalize()把首字母变成大写,最后用join()合并到一起
S.title() #只有首字母大写,其余为小写,模块中没有这个方法
字符串在输出时的对齐:
S.ljust(width,[fillchar])
#输出width个字符,S左对齐,不足部分用fillchar填充,默认的为空格。
S.rjust(width,[fillchar]) #右对齐
S.center(width, [fillchar]) #中间对齐
S.zfill(width) #把S变成width长,并在右对齐,不足部分用0补足
字符串中的搜索和替换:
S.find(substr, [start, [end]])
#返回S中出现substr的第一个字母的标号,如果S中没有substr则返回-1。start和end作用就相当于在S[start:end]中搜索
S.index(substr, [start, [end]])
#与find()相同,只是在S中没有substr时,会返回一个运行时错误
S.rfind(substr, [start, [end]])
#返回S中最后出现的substr的第一个字母的标号,如果S中没有substr则返回-1,也就是说从右边算起的第一次出现的substr的首字母标号
S.rindex(substr, [start, [end]])
S.count(substr, [start, [end]]) #计算substr在S中出现的次数
S.replace(oldstr, newstr, [count])
#把S中的oldstar替换为newstr,count为替换次数。这是替换的通用形式,还有一些函数进行特殊字符的替换
S.strip([chars])
#把S中前后chars中有的字符全部去掉,可以理解为把S前后chars替换为None
S.lstrip([chars])
S.rstrip([chars])
S.expandtabs([tabsize])
#把S中的tab字符替换成空格,每个tab替换为tabsize个空格,默认是8个
字符串的分割和组合:
S.split([sep, [maxsplit]])
#以sep为分隔符,把S分成一个list。maxsplit表示分割的次数。默认的分割符为空白字符
S.rsplit([sep, [maxsplit]])
S.splitlines([keepends])
#把S按照行分割符分为一个list,keepends是一个bool值,如果为真每行后而会保留行分割符。
S.join(seq) #把seq代表的序列──字符串序列,用S连接起来
字符串的mapping,这一功能包含两个函数:
String.maketrans(from, to)
#返回一个256个字符组成的翻译表,其中from中的字符被一一对应地转换成to,所以from和to必须是等长的。
S.translate(table[,deletechars])
# 使用上面的函数产后的翻译表,把S进行翻译,并把deletechars中有的字符删掉。需要注意的是,如果S为unicode字符串,那么就不支持 deletechars参数,可以使用把某个字符翻译为None的方式实现相同的功能。此外还可以使用codecs模块的功能来创建更加功能强大的翻译表。
字符串还有一对编码和解码的函数:
S.encode([encoding,[errors]])
# 其中encoding可以有多种值,比如gb2312 gbk gb18030 bz2 zlib big5 bzse64等都支持。errors默认值为"strict",意思是UnicodeError。可能的值还有'ignore', 'replace', 'xmlcharrefreplace', 'backslashreplace' 和所有的通过codecs.register_error注册的值。这一部分内容涉及codecs模块,不是特明白
S.decode([encoding,[errors]])
字符串的测试函数,这一类函数在string模块中没有,这些函数返回的都是bool值:
S.startwith(prefix[,start[,end]])
#是否以prefix开头
S.endwith(suffix[,start[,end]])
#以suffix结尾
S.isalnum()
#是否全是字母和数字,并至少有一个字符
S.isalpha() #是否全是字母,并至少有一个字符
S.isdigit() #是否全是数字,并至少有一个字符
S.isspace() #是否全是空白字符,并至少有一个字符
S.islower() #S中的字母是否全是小写
S.isupper() #S中的字母是否便是大写
S.istitle() #S是否是首字母大写的
字符串类型转换函数,这几个函数只在string模块中有:
string.atoi(s[,base])
#base默认为10,如果为0,那么s就可以是012或0x23这种形式的字符串,如果是16那么s就只能是0x23或0X12这种形式的字符串
string.atol(s[,base]) #转成long
string.atof(s[,base]) #转成float
这里再强调一次,字符串对象是不可改变的,也就是说在python创建一个字符串后,你不能把这个字符中的某一部分改变。任何上面的函数改变了字符串后,都会返回一个新的字符串,原字串并没有变。其实这也是有变通的办法的,可以用S=list(S)这个函数把S变为由单个字符为成员的list,这样的话就可以使用S[3]='a'的方式改变值,然后再使用S=" ".join(S)还原成字符串
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20