京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python 列表(List)操作方法详解
这篇文章主要介绍了Python中列表(List)的详解操作方法,包含创建、访问、更新、删除、其它操作等,需要的朋友可以参考下.
列表是Python中最基本的数据结构,列表是最常用的Python数据类型,列表的数据项不需要具有相同的类型。列表中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推。
Python有6个序列的内置类型,但最常见的是列表和元组。序列都可以进行的操作包括索引,切片,加,乘,检查成员。此外,Python已经内置确定序列的长度以及确定最大和最小的元素的方法。
一、创建一个列表
只要把逗号分隔的不同的数据项使用方括号括起来即可。如下所示:
代码如下:
list1 = ['physics', 'chemistry', 1997, 2000];
list2 = [1, 2, 3, 4, 5 ];
list3 = ["a", "b", "c", "d"];
与字符串的索引一样,列表索引从0开始。列表可以进行截取、组合等。
二、访问列表中的值
使用下标索引来访问列表中的值,同样你也可以使用方括号的形式截取字符,如下所示:
代码如下:
#!/usr/bin/python
list1 = ['physics', 'chemistry', 1997, 2000];
list2 = [1, 2, 3, 4, 5, 6, 7 ];
print "list1[0]: ", list1[0]
print "list2[1:5]: ", list2[1:5]
以上实例输出结果:
代码如下:
list1[0]: physics
list2[1:5]: [2, 3, 4, 5]
三、更新列表
你可以对列表的数据项进行修改或更新,你也可以使用append()方法来添加列表项,如下所示:
代码如下:
#!/usr/bin/python
list = ['physics', 'chemistry', 1997, 2000];
print "Value available at index 2 : "
print list[2];
list[2] = 2001;
print "New value available at index 2 : "
print list[2];
以上实例输出结果:
代码如下:
Value available at index 2 :
1997
New value available at index 2 :
2001
四、删除列表元素
可以使用 del 语句来删除列表的的元素,如下实例:
代码如下:
#!/usr/bin/python
list1 = ['physics', 'chemistry', 1997, 2000];
print list1;
del list1[2];
print "After deleting value at index 2 : "
print list1;
以上实例输出结果:
复制代码 代码如下:
['physics', 'chemistry', 1997, 2000]
After deleting value at index 2 :
['physics', 'chemistry', 2000]
五、Python列表脚本操作符
列表对 + 和 * 的操作符与字符串相似。+ 号用于组合列表,* 号用于重复列表。
如下所示:
六、Python列表截取
Python的列表截取与字符串操作类型,如下所示:
代码如下:
L = ['spam', 'Spam', 'SPAM!']
操作:
七、Python列表操作的函数和方法
列表操作包含以下函数:
1、cmp(list1, list2):比较两个列表的元素
2、len(list):列表元素个数
3、max(list):返回列表元素最大值
4、min(list):返回列表元素最小值
5、list(seq):将元组转换为列表
列表操作包含以下方法:
1、list.append(obj):在列表末尾添加新的对象
2、list.count(obj):统计某个元素在列表中出现的次数
3、list.extend(seq):在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)
4、list.index(obj):从列表中找出某个值第一个匹配项的索引位置
5、list.insert(index, obj):将对象插入列表
6、list.pop(obj=list[-1]):移除列表中的一个元素(默认最后一个元素),并且返回该元素的值
7、list.remove(obj):移除列表中某个值的第一个匹配项
8、list.reverse():反向列表中元素
9、list.sort([func]):对原列表进行排序
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01