京公网安备 11010802034615号
经营许可证编号:京B2-20210330
详解Python中的序列化与反序列化的使用
学习过marshal模块用于序列化和反序列化,但marshal的功能比较薄弱,只支持部分内置数据类型的序列化/反序列化,对于用户自定义的类型就无能为力,同时marshal不支持自引用(递归引用)的对象的序列化。所以直接使用marshal来序列化/反序列化可能不是很方便。还好,python标准库提供了功能更加强大且更加安全的pickle和cPickle模块。
cPickle模块是使用C语言实现的,所以在运行效率上比pickle要高。但是cPickle模块中定义的类型不能被继承(其实大多数时候,我们不需要从这些类型中继承。)。cPickle和pickle的序列化/反序列化规则是一样的,我们可以使用pickle序列化一个对象,然后使用cPickle来反序列化。同时,这两个模块在处理自引用类型时会变得更加“聪明”,它不会无限制的递归序列化自引用对象,对于同一对象的多次引用,它只会序列化一次。例如:
import marshal, pickle
list = [1]
list.append(list)
byt1 = marshal.dumps(list)
#出错, 无限制的递归序列化
byt2 = pickle.dumps(list)
#No problem
pickle的序列化规则
Python规范(Python-specific)提供了pickle的序列化规则。这就不必担心不同版本的Python之间序列化兼容性问题。默认情况下,pickle的序列化是基于文本的,我们可以直接用文本编辑器查看序列化的文本。我们也可以序列成二进制格式的数据,这样的结果体积会更小。更详细的内容,可以参考Python手册pickle模块。
下面就开始使用pickle吧~
pickle.dump(obj, file[, protocol])
序列化对象,并将结果数据流写入到文件对象中。参数protocol是序列化模式,默认值为0,表示以文本的形式序列化。protocol的值还可以是1或2,表示以二进制的形式序列化。
pickle.load(file)
反序列化对象。将文件中的数据解析为一个Python对象。下面通过一个简单的例子来演示上面两个方法的使用:
#coding=gbk
import pickle, StringIO
class Person(object):
'''自定义类型。
'''
def __init__(self, name, address):
self.name = name
self.address = address
def display(self):
print 'name:', self.name, 'address:', self.address
jj = Person("JGood", "中国 杭州")
jj.display()
file = StringIO.StringIO()
pickle.dump(jj, file, 0)
#序列化
#print file.getvalue() #打印序列化后的结果
#del Person #反序列的时候,必须能找到对应类的定义。否则反序列化操作失败。
file.seek(0)
jj1 = pickle.load(file)
#反序列化
jj1.display()
file.close()
注意:在反序列化的时候,必须能找到对应类的定义,否则反序列化将失败。在上面的例子中,如果取消#del Person的注释,在运行时将抛AttributeError异常,提示当前模块找不到Person的定义。
pickle.dumps(obj[, protocol])
pickle.loads(string)
我们也可以直接获取序列化后的数据流,或者直接从数据流反序列化。方法dumps与loads就完成这样的功能。dumps返回序列化后的数据流,loads返回的序列化生成的对象。
python模块中还定义了两个类,分别用来序列化、反序列化对象。
class pickle.Pickler(file[, protocal]):
该类用于序列化对象。参数file是一个类文件对象(file-like object),用于保存序列化结果。可选参数表示序列化模式。它定义了两个方法:
dump(obj):
将对象序列化,并保存到类文件对象中。参数obj是要序列化的对象。
clear_memo()
清空pickler的“备忘”。使用Pickler实例在序列化对象的时候,它会“记住”已经被序列化的对象引用,所以对同一对象多次调用dump(obj),pickler不会“傻傻”的去多次序列化。下面是一个简单的例子:
#coding=gbk
import pickle, StringIO
class Person(object):
'''自定义类型。
'''
def __init__(self, name, address):
self.name = name
self.address = address
def display(self):
print 'name:', self.name, 'address:', self.address
fle = StringIO.StringIO()
pick = pickle.Pickler(fle)
person = Person("JGood", "Hangzhou China")
pick.dump(person)
val1 = fle.getvalue()
print len(val1)
pick.clear_memo()
#注释此句,再看看运行结果
pick.dump(person)
#对同一引用对象再次进行序列化
val2 = fle.getvalue()
print len(val2)
#---- 结果 ----
#148
#296
#
#将这行代码注释掉:pick.clear_memo()
#结果为:
#148
#152
class pickle.Unpickler(file):
该类用于反序列化对象。参数file是一个类文件(file-like object)对象,Unpickler从该参数中获取数据进行反序列化。
load():
反序列化对象。该方法会根据已经序列化的数据流,自动选择合适的反序列化模式。
#.... 接上个例子中的代码
fle.seek(0)
unpick = pickle.Unpickler(fle)
print unpick.load()
上面介绍了pickle模块的基本使用,但和marshal一样,并不是所有的类型都可以通过pickle序列化的。例如对于一个嵌套的类型,使用pickle序列化就失败。例如:
class A(object):
class B(object):
def __init__(self, name):
self.name = name
def __init__(self):
print 'init A'
b = A.B("my name")
print b
c = pickle.dumps(b, 0)
#失败哦
print pickle.loads(c)
关于pickle支持的序列化类型,可以参考Python手册。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06