
大数据下移动游戏如何进行精细化运营
根据维基百科的定义,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。毫无疑问,现在正处于大数据的时代下。而在这样的背景下,大数据对移动游戏有哪些影响呢?开发者们又应该如何通过大数据进行精细化运营从而提高游戏的收入和延长生命周期,有以下的看法:
大数据下玩家信息获取成本降低成本降低,开发者竞争激烈
移动游戏和端游页游最大的区别就是有了渠道的整合。在端游时代,并没有专门的渠道把游戏放在一起,玩家可能只知道CF或者是DNF,但是却很难知道这些游戏的竞品有哪些,在哪里。但是到了移动游戏或者说移动互联网时代,由于有了像AppStore,GooglePlay和国内众多渠道,游戏或者应用就会被放在一起比较。这样就导致了两个结果,第一,用户很清楚自己有多少个选择,并且会知道每一款游戏或者应用的评分是怎么样的。第二,用户的切换成本会降低了许多。举个例子,在PC时代,大家看新闻都会惯性地上同一个门户网站,并没有人会告诉你各个门户的排名和得分之类的信息,在同一个垂直领域并没有知道他们的排名是怎么样的。但在移动互联网时代,这个格局已经明显的改变了,开发者的游戏或者应用是和很多开发者一起去竞争。特别是在App Store上,是和全球的开发者竞争。
其次,随着信息的扁平化,全球信息的交流已经越来越快,时间差也渐渐减少,可能大城市发生的事情一分钟之后整个小山村里面的人都知道了。如果说10年前还是赚的是信息不对称的钱的话,随着大数据、信息化的时代到来,开发者游戏或者应用要脱颖而出,就变得非常困难。
玩家离开游戏主因有二:挫败感与孤独感
即使玩家已经进入游戏,但是也是极易流失的。而有腾讯相关人士曾透露,玩家离开游戏主因有二:挫败感与孤独感。
1.挫败感
挫败感是影响用户留存的最重要因素。腾讯曾通过对“失败数”、“连续失败数”、“任务完成情况”等这些数据进行分析,发现一旦这些数值超过一定的量,玩家离开游戏的流失率就会大大增加。通过对数据的研究,发现用户通过率比游戏设定的时候低的时候,这个时候就可以通过降低游戏的难度来提升用户留存。
对于那些因为挫败感离开了游戏的用户,开发者可以通过对消息的推送或者运营的活动把玩家拉回到游戏里面来。对于那些摇摇欲坠的用户,可以送他们一些道具或者礼包,帮助他通过面对的困难。所以这个就需要数据的支持,针对每一个用户,选择适合他们的运营,做精细化运营。
2.孤独感
现在的移动游戏总有一种孤独感。同样是网游,在端游时代,类似公会、国战、帮派这些玩法,大家用Q群或者YY在相互联系,大家的联系非常非常高。每一款游戏到中后期运营最重要的一定是社交因素。到目前为止,移动游戏在社交这方面还没有突破性的进展,现在的社交元素只是浅层次的社交。在端游时代,有很多中重度玩家,每天都和另外的玩家一起去打副本、PvP,这样才是最有效的留住玩家的方法。
社交感差导致玩家的孤独感,才是移动游戏平均寿命比较短的原因。一些好的端游和页游寿命长达10年,而在移动游戏时代,游戏寿命能有半年有已经非常不错了,很多开发商把游戏做出来捞一笔就走了。那些寿命比较长的游戏,玩家都是有感情在里面的,主要是里面有一群好的兄弟,这些才是大家留在一款游戏里面的最重要因素。现在的手游也是比较欠缺的。通过大数据统计,玩家的好友数量和在游戏上的时常是成正比的,好友数量越多,玩家在游戏里面的时间是越长的。
大数据的作用在于对未来的预测而非过去的总结
通过大数据的分析,开发者可以知道玩家的心理,知道哪些人会为你的游戏充值,埋单,
可以很清楚每一玩家喜欢那种类型的游戏,曾经在那款相同类型的充值。比如说一款游戏的付费率是1%,那剩下的99%的玩家里面,有谁是有欲望付费的,这些大数据能告诉你。哪20%的玩家最有可能付费,那些已经在同类型的游戏里面已经付过费了,或者从游戏里面的表现来说很有付费的意愿,这些都应该是要重点关注的玩家。这些玩家怎么才能让他们掏腰包,这个时候就需要你给他们一个付费的理由了,这个就是大数据的作用了。
大数据重要的不是提供给你历史和现状,而是通过分析做出对未来的预测。对历史数据的分析得出来的就是结果,已经没有办法改变了。但是大数据是通过的数据和研究,得出未来用户或者玩家的行为,这个才是最重要的。只有对未来的预测,才能更好的进行运营活动,甚至是修改游戏,这样才能留住玩家。这个就是大数据对游戏的最大作用,逆转未来,留住要走的玩家,并让他们把钱留下。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18