京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网网站应用大多采用mysql作为DB存储,限于mysql单机性能的瓶颈,为了支撑更大容量和更大的访问量,dba一般通过建立 分布式集群,让多个mysql共同提供服务。所谓的mysql分布式集群,实质就是将原有的数据拆成多份,放在多个mysql数据库上存储,应用通过中间 层路由到对应的数据库分片,访问所需要数据,基本架构如图1所示。这里的关键点就是“拆”,如何拆库,根据业务场景,一般可以采取水平拆分和垂直拆分。所 谓水平拆分是指,将一个大表按一定的规则分片,分布在多个mysql数据库中;垂直拆分则是指根据业务模块划分,将不同模块分布在不同的mysql数据库 中。无论是水平拆分,还是垂直拆分,对于底层运维人员来说,迁移扩容的本质是一样的。本文会结合一个具体的例子,详细讲解mysql拆库的具体步骤。
前提:mysq集群部署采用MM架构,Master与Slave采用双向复制,Master对外提供服务,Slave作为热备。
假设:实例上有库A和库B,目前受限于单机mysql的性能瓶颈,需要扩容。
目的:将库B拆出来,使得库A和库B分别单独占用物理机,如图2所示
实施步骤:
1.搭建备库
Mysql搭建备库主要有两种方式,逻辑备份(mysqldump)或物理备份(extrabackup)。由于我们需要将其中一个库拆出来,选择mysqldump会比较合适。
|
mysqldump -uxxx -pxxx –h ip_addr -P port --databases B mysql --master-data=2 --single-transaction --default-character-set=xxx > /u01/bak/B_dump.sql 2>/u01/bak/B_dump.log & |
说明:
1) 参数
--master-data=2,--single-transaction这两个参数一起使用,全局读锁只会在dump开始的时 候加一小段时间,通过设置repeatable read隔离级别,保证读取事务开始时的数据,获取一致性数据,并且在备份文件开头处显示位点(File,Position)。
2) 为什么要备份mysql库
这里是因为数据库的元数据信息都存储在mysql中,比如表定义,用户 信息等,因此需要一起备份过去。
2. 检查备份是否成功
|
查看/u01/bak/B_dump.sql的结尾是否有dump complete 查看/u01/bak/B_dump.log文件是否异常输出 |
3.导入备份到新机器
|
Mysql –uroot</u01/bak/B_dump.sql>B_import.log 2>&1 & |
4.导入增量
1) 由于老库上面有A,B两个库,新库只有B库,通过复制获取增量时,必然会导致报错,因此在导入前需要对新库设置复制过滤参数,replicate-do-db
|
replicate-do-db=mysql replicate-do-db=B |
2) 新库与老库建立复制关系,这里需要用到步骤1获取的位点信息(File,Position)
|
CHANGE master TO master_host=xxx, master_port=xxx,master_user='slave',master_password='slave', master_log_file=File,master_log_pos=Position; |
5. 等待新库与老库同步,至此新库与老库复制结构如下图
6. 切换
1) 将New M设置为可写状态,并将Old M与New M构成双M架构
备注:红色代表本次操作的复制变动
2) 通知应用将B库流量切换到New Master,由于这里设置到中间件的细节,不同公司采用的中间件不一样,这里不作说明
3) B库流量全部切换到New Master 后,检查Old Master是否还有B库流量访问,确定没有,调整复制结构
备注: 检查是否还有流量,可以通过show processlist看看是否还有连接来验证。
7.切换完毕 ,断开New Master 和Old Master的复制
8.善后
清理Old Master的B库数据,释放磁盘空间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31