京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代引发科学投资风尚_数据分析师
对于大数据,王政表示:“大数据时代,资产管理的一个风尚就是由艺术式投资变为科学式投资,大数据可以做以前他们想做却做不了的事,如对市场情绪的搜集和判断。通过大数据,可以尽可能大范围地搜索新闻信息,包括行业层面或者公司机构,来判断市场情绪,对这个行业是乐观还是悲观,对公司是看好还是不看好。”
一个人的心理或许很难捉摸,但某些外在信息显露汇集而成的市场趋势恰恰是资产投资管理的判断标准。如广发基金和百度合作推出的一款大数据基金,就是建立在百度搜索的海量数据信息基础之上,选取成分股来构成的。王政说没有人会想到互联网搜索数据也可以成为构建指数的一个方式,但大数据做到了。
在这样一位多年从事资产管理工作的老手看来,大数据给以基金为代表的资产管理行业带来了“质的飞跃”。王政总结了资产管理领域的两次飞跃。在计算机之前,投资单纯依靠人的判断,根据行业经验和专业积累,判断市场行情趋势,构成自己的投资逻辑。计算机的出现改变了原有的研究方法,投资人员总结出普遍的市场规律,通过计算机进行量化投资开始盛行,这是一次飞跃。大数据时代实现了从小样本到全样本信息的搜集,充分利用海量数据,借助机器学习充分挖掘有价值的市场因子,开启智能投资新时代,这是第二次飞跃。
大数据带来的量变是否一定会带来质变是个未知数,数据的广度和准确度显然并不一定成正比。“这考验的就是数据服务提供商挖掘分析数据的能力,因为数据中存在一些无用的"噪音",我们要尽可能剔除它们,提炼出有价值的信息。”王政将那些干扰性的数据形象地称之为“噪音”。
另一个排除干扰的解决方案叫“机器学习”—machine
learning。机器在海量信息存储的基础上,通过不断地“学习”,机器的“思考”能力—根据过往数据总结的经验有效判断市场行情的变化—得以渐渐形成。
可以看出,大数据背后依托的不仅是海量数据,更重要的是分析挖掘数据并精准应用的能力,智能计算机技术是构成这种能力的关键。机器取代人类,在资产投资领域,似乎比科幻片中机器人占领世界的可能性要大的多。在这样一个趋势下,未来某个阶段,是否所有投资者都能变成王亚伟呢?王政说,理论上,市场越有效,“王亚伟”反而越不会出现,因为所有参与者的表现都一样。当然,这种终极场景就像经济学中提到的“完全竞争市场”一样,在现实中难以真实存在。“终究机器是由人设计的,人建立模型的能力不同,这就决定了市场的非有效性。”人在大数据时代扮演的是什么角色?王政打了一个比方:“大数据是乐器,人就是演奏者,人要设计机器,训练机器,提升机器的学习能力。”
人抓取运用数据的能力,决定了大数据时代的意义。王政提到了一些国外大数据服务同行的做法,从中也能看到数据的微妙之处。他说国外一家专业数据服务公司,通过在发电厂附近的居民区内安装探测器,来统计电厂的输送电量,观察发电情况。“用电量从宏观上可以判断一个国家经济的运转情况,从微观上可以判断一户人家的消费水平。同样,如果要判断一家超市的销售情况,可以统计其车库每日进出车辆的数量。”王政强调这种大数据分析的优势在于,专业投资机构得到这样的数据,可以在官方统计结果公布前,提前对市场变化做出预期判断,从而先人一步把握投资机会。
数据背后隐藏的信息量,就是投资逻辑建立的基础。而在投资之外,王政对保险行业大数据应用同样看好。同样是建立在数理统计模型上的保险产品,大数据的引入,对其定价模式产生了翻天覆地的变化。“比如车险,以前定价比较统一,就是因为无法精确地判断每个投保人的具体风险情况,如今通过车载设备提供的数据,可以有效了解驾驶员的行为、驾驶技术和习惯,再据此判断其驾驶发生风险的可能性是大还是小。”王政表示,保险行业是未来大数据重点拓展的一大方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26