
优化与求解非线性方程组(单变量问题)
求函数极值的问题通常被化简为求解导数为0的点的问题。所以优化问题通常与解非线性方程组联系起来。在前面写点估计中的mle时,我们介绍了R中求解方程极值的函数nlm(),optim().
我们以一元函数f(x)=ln(x)/(1+x)为例求解函数的极值。
f<-function(x) -log(x)/(1+x) #(1)
optimize(f,c(0,10)) #求解(0,10)上的最小值,对于一元函数区间的确定,我们通常可以画图来做初步判断
对于多元函数:
f <- function(x) sum((x-1:length(x))^2)
nlm(f, c(10,10))#这里需要给出迭代的初值
optim(c(10,10),f)
由于nlm,optim,的默认迭代方法不同,得出的结果精度也会有区别。运行上面的代码,我们可以看到nlm给出的最小值点为(1,2),而optim给出的是(1.000348, 2.001812)。
我们也可以通过求解函数的导数为0的点求解函数的极值。还是以1式为例。运行下面的代码:
D(expression(log(x)/(1+x)),"x")
结果为:1/x/(1 + x) - log(x)/(1 + x)^2。 (2)
对于这样的方程,我们通常是没有好的办法让R给出解析解的。我们可以使用一些数值办法来求解方程(2)的数值解。常用的办法有:二分法,newton法,fisher得分法,不动点迭代法。下面我们来简单介绍算法的思想与R的实现代码。
一、二分法
二分法的思想十分简单,利用的就是函数的中值定理,局限也十分明显,只能求解出一个根而且速度较慢。所以函数的单调性,作图都是解决第一个局限的办法。
给出方程(1)的极小值利用二分法的求解程序:
fzero<-function(f,a,b,eps=1e-6){注:跟踪导函数值为0来检测收敛情况是诱人的,但是存在不稳定性,利用绝对收敛准则解决了这一问题(当然用相对收敛准则也是可以的)
二、Newton法
Newton-rapshon迭代是一种快速求根方法。主要利用泰勒级数展开来解决问题。
利用0=g’(x)=g’(x(t))+g’’(x(t))(x-x(t))(后面的等式是近似成立)来近似g’(x)。解上述的这个方程,我们可以得到一个很好的线性近似,迭代方程为:
X(t+1)=x(t)+g’(x(t))/g’’(x(t))
收敛条件依然使用绝对收敛。对于方程(1),有:
> D(expression(log(x)/(1+x)),"x")
1/x/(1 + x) - log(x)/(1 + x)^2
> D(expression(1/x/(1 + x) - log(x)/(1 + x)^2),"x")
-(1/x^2/(1 + x) + 1/x/(1 + x)^2 + (1/x/(1 + x)^2 - log(x) * (2 * (1+ x))/((1 + x)^2)^2))
问题的newton增量为:h(t)=((x(t)+1)(1+1/x(t)-logx(t))/(3+4/x(t)+1/(x(t))^2-2logx(t))
给出方程(1)的极小值利用newton法的求解程序:
三、Fisher得分法
我们知道fisher信息量是对数似然函数的二阶导数的期望的相反数。所以在求解g对应着的mle优化时,使用fisher信息量替换是合理的。这里不再给出程序。
四、切线法
在牛顿法的基础上,我们把导数改为曲线上两点的连线的斜率显然也十分的合理。这便是切线法的基本想法。我们还是给出上面例子的R程序:
f0<-function(x){五、不动点迭代法
除去二分法外,我们所讨论的都是不动点迭代的特例。这里只是简要叙述一下不动点迭代法的原理,并以开篇的例子给出R程序。
不动点定理是一个结果表示函数F在某种特定情况下,至少有一个不动点存在,即至少有一个点x能令函数F(x)=x。在数学中有很多定理能保证函数在一定的条件下必定有一个或更多的不动点,而在这些最基本的定性结果当中存在不动点及其定理被应用的结果具有非常普遍的价值。
ffour<-function(f0,a,eps=1e-6){这里还想说一点的就是关于不动点迭代的条件(百度一下,你就知道),如果不满足的话,需要对导函数前乘上一个系数加以调整,本例中的4*f0(a)+a正是调整刻度的结果。
<pre class="plain" name="code"></pre>
<pre></pre>
<pre></pre>
<pre></pre>
<pre></pre>
<pre></pre>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13