京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言与非参数统计(核密度估计)
核密度估计是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window)。
假设我们有n个数X1-Xn,我们要计算某一个数X的概率密度有多大。核密度估计的方法是这样的:
其中K为核密度函数,h为设定的窗宽。
核密度估计的原理其实是很简单的。在我们对某一事物的概率分布的情况下。如果某一个数在观察中出现了,我们可以认为这个数的概率密度很大,和这个数比较近的数的概率密度也会比较大,而那些离这个数远的数的概率密度会比较小。基于这种想法,针对观察中的第一个数,我们都可以f(x-xi)去拟合我们想象中的那个远小近大概率密度。当然其实也可以用其他对称的函数。针对每一个观察中出现的数拟合出多个概率密度分布函数之后,取平均。如果某些数是比较重要,某些数反之,则可以取加权平均。
但是核密度的估计并不是,也不能够找到真正的分布函数。我们可以举一个极端的例子:在R中输入:
plot(density(rep(0, 1000)))
可以看到它得到了正态分布的曲线,但实际上呢?从数据上判断,它更有可能是一个退化的单点分布。
但是这并不意味着核密度估计是不可取的,至少他可以解决许多模拟中存在的异方差问题。比如说我们要估计一下下面的一组数据:
可以看出它是由300个服从gamma(2,2)与100个gamma(10,2)的随机数构成的,他用参数统计的办法是没有办法得到一个好的估计的。那么我们尝试使用核密度估计:
plot(density(dat),ylim=c(0,0.2))
将利用正态核密度与标准密度函数作对比
得到下图:
(红色的曲线为真实密度曲线)
可以看出核密度与真实密度相比,得到大致的估计是不成问题的。至少趋势是得到了的。如果换用gamma分布的核效果无疑会更好,但是遗憾的是r中并没有提供那么多的核供我们挑选(其实我们知道核的选择远没有窗宽的选择来得重要),所以也无需介怀。
R中提供的核:kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight","cosine", "optcosine")。
我们先来看看窗宽的选择对核密度估计的影响:
得到下图,我们可以清楚的看到带宽为0.8恰好合适,其余的不是拟合不足便是过拟合。
窗宽究竟该如何选择呢?
我们这里不加证明的给出最佳窗宽选择公式:
(这个基于积分均方误差最小的角度得到的)
这里介绍两个可操作的窗宽估计办法:(这两种方法都比较容易导致过分光滑)
1、 Silverman大拇指法则
这里使用R(phi’’)/sigma^5估计R(f’’),phi代表标准正态密度函数,得到h的表达式:
h=(4/(3n))^(*1/5)*sigma
2、 极大光滑原则
h=3*(R(K)/(35n))^(1/5)*sigma
当然也有比较麻烦的窗宽估计办法,比如缺一交叉验证,插入法等,可以参阅《computational statistics》一书
我们用上面的两种办法得到的窗宽是多少,他的核密度估计效果好吗?
我们还是以上面的混合正态数据为例来看看效果。
使用大拇指法则,将数据n=400,sigma=3.030658,带入公式,h=0.9685291
使用极大光滑原则,假设K为正态核,R(K)=1/(sqrt(2*pi)),h=1.121023
可以看出他们都比我们认为的h=0.8要大一些,作图如下:
plot(density(data,bw=0.9685))
plot(density(data,bw=1.1210))
由我们给出的
以Gauss核为例做核密度估计
用Gauss核做核密度估计的R程序如下(还是使用我们的混合正态密度的例子):
作图如下:
最后说一个R的内置函数density()。其实我觉得如果不是为了简要介绍核密度估计的一些常识我们完全可以只学会这个函数
先看看函数的基本用法:
density(x, ...)
## Default S3 method:
density(x, bw = "nrd0", adjust = 1,
kernel = c("gaussian", "epanechnikov", "rectangular",
"triangular", "biweight",
"cosine", "optcosine"),
weights = NULL, window = kernel, width,
give.Rkern = FALSE,
n = 512, from, to, cut = 3, na.rm = FALSE, ...)
对重要参数做出较为详细的说明:
X:我们要进行核密度估计的数据
Bw:窗宽,这里可以由我们自己制定,也可以使用默认的办法nrd0: Bandwidth selectors for Gaussian kernels。我们还可以使用bw.SJ(x,nb = 1000, lower = 0.1 * hmax, upper = hmax, method = c("ste","dpi"), tol = 0.1 * lower),这里的method =”dpi”就是前面提到过的插入法,”ste”代表solve-the-equationplug-in,也是插入法的改进
Kernel:核的选择
Weights:对比较重要的数据采取加权处理
对于上述混合正态数据data,有
> density(data)
Call:
density.default(x = data)
Data: data (400 obs.); Bandwidth 'bw' = 0.8229
x y
Min. :-7.5040 Min. :0.0000191
1stQu.:-3.5076 1st Qu.:0.0064919
Median : 0.4889 Median :0.0438924
Mean :0.4889 Mean :0.0624940
3rdQu.: 4.4853 3rd Qu.:0.1172919
Max. :8.4817 Max. :0.1615015
知道带宽:h=0.8229(采取正态密度核)那么带入密度估计式就可以写出密度估计函数。
最后以faithful数据集为例说明density的用法:
R数据集faithful是old faithful火山爆发的数据,其中“eruption”是火山爆发的持续时间,waiting是时间间隔
对数据“eruption”做核密度估计
R程序:
知道h= 0.3348
作图:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09