京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用向前一步是什么
最初的数据应用是比较线性的,因为早期的数据运营流程和应用场景是已经被定死的,通常用作精准营销。渐渐的,我们发现,非线性数据应用对于企业的价值更大。
数据之于信息社会,就如燃料之于工业革命,是人们进行创新的力量源泉。大部分企业早已意识到数据的价值以及重要性,但真正享受到数据福利的公司却是少数。
先人一步掌握数据应用思维的企业,往往能够拥有更多的市场主动权。
最初,数据应用通常是线性的,但随着市场环境和技术成熟度的发展,数据应用正在走向非线性模式。
具体来说,企业可以通过使用技术工具,让企业能够将自己的多方来源数据进行 360°的自定义分析,通过一些统计和机器学习类的算法获得洞察,最终让企业自己去发挥怎样做数据应用以及灵活的做些测试。
对应的,实现非线性的数据解决方案,是目前全球范围 MarTech 和数据技术领域最新的热点 CDP (客户数据平台),也是数据云系统。
现实的尴尬
相比以前,如今企业拥有越来越多的渠道、设备、数据和消费者触点。因此,企业自身拥有的数据,以及市场上类似媒体、运营商等各种渠道的多方数据,其规模越来越大,类型越来越多,但却相当分散。
另外,早期数据市场上存在的问题,比如数据孤岛如今依旧存在。
市场中的大数据缺乏有效的、靠谱的交流方式,各个数据的拥有者如同一个个独立的水库。对数据的透明性、安全性,以及过程把控性的担心像一个个水闸,将本应流动的数据资源封锁在各自的数据孤岛上,活水变成了死水,使得大数据发展不那么顺畅。
对于企业,要去解决的问题有两个:分散的数据源和局部数据使用。
分散的数据源
“一个业务如果无法度量,则无法分析和增长”——美国管理学大师彼得德鲁克说。
如何度量,这里需要考虑一个统一视角的问题。数据统一视角的重要性在于它给使用者提供了一个量化的概念。它让使用者可以清晰的看到业务的运行情况,以便进行KPI考核和策略调整,促进业绩的增长。
从第一方数据来看,企业的自身数据包括:订单数据、CRM 数据、ERP 数据等,是企业通过各种不同渠道收集到的数据,比如 PC/移动站点、电商站点、移动app、互联网广告、实时互联网等数据源,以及企业持续积累的客户数据。这些数据对于企业决策及运营起着关键作用。
第三方数据则是企业可接入的外部供应商数据,比如媒体数据、外部系统/平台数据、第三方数据源数据。
企业拥有的数据规模很大,数据类型很丰富,但问题在于,这些数据,不进行统合,则很分散。
企业的真实需求
回归到商业本质,数据产品对于企业来讲,真正的价值是什么?效率和效果的提升。
效率和效果的提升,是从企业整体来讲的。因此,有行业人士提出一个新方向:“单独谈数据太片面了,应该是数据+用户体验,需针对消费者购买旅程设计个性化的服务”。
实现这个目标,企业需要从数据中获得洞察。而洞察的形成,则需要一个流程:“收集——统览——分析——梳理——提炼——获得结论,或者大数据洞察”。
那么获得洞察后,就能实际产生效应?当然不是。
企业接触消费者有 N 个触点,这里的触点,可以说是消费场景。真正把洞察和分析的数据结果,应用于各大消费场景中才能发挥实际价值。
另外,这不是一条线完成,导回数据、其他数据源的接入,以及应用于多场景的数据技术工具都是其中组件。
完成以上这些,需要“非线性”操作。
概括来讲,企业需要这样一个角色,负责对外和客户、合作伙伴、供应商的互动,以及对内收集和分析数据、通过使用数字化技术改善效率,实现组织和文化的转型。
从线性到非线性
对于大数据企业而言,随着数据不断的扩充和积累,需要对散落在各个渠道的数据进行良好的管理、控制和应用。我们将企业的数据化转型分为三个阶段。
1、过去:大部分企业没有发现数据的价值,没有分析能力,数据也无法应用;
2、现在:数据碎片化严重,缺乏统合及分析能力,无法统一应用;
3、未来:数据统一管理,打通数据孤岛,智能分析洞察,灵活智能运用。
从过去到未来,数据应用可以说正在从线性走向非线性的过程。
举一个例子,当一个尚未成为会员的用户来到品牌官网,他在浏览了感兴趣的商品、仔细比较了商品价格之后,最后却关闭了购买页面离开了网站。
没有人知道这个新用户究竟浏览了什么商品/在哪些商品页面停留了多久,也没有人能回答在订单转化的过程中,究竟是什么原因使他没有购买。因为在 CRM 中储存的大多是以销售为导向的数据,并不会涵盖像这样的实时行为数据。
结语
数据应用的非线性,属于正在探索未知水域,这是一个全新的蓝海市场。
目前,数据云处于早期阶段,可以看见其快速发展,但不会对市场格局产生大的影响。使用数据云的企业目前大部分是大型企业或者 pre-IPO 的互联网企业,当然,也有小部分中型企业,或者创业型的中小型企业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21