京公网安备 11010802034615号
经营许可证编号:京B2-20210330
工业大数据与工业4.0的关系
现在的世界,已经进入了一个概念满天飞的年代。和工业大数据相关的概念非常多,包括工业4.0、物联网、云计算、人工智能、智能制造等等,接下来,我会追根溯源,把这些概念都理清楚,这样,我们才能更好地理解工业大数据。今天先聊一聊工业4.0是怎么回事。
工业4.0的概念来源比较清晰,不像大数据概念的来源,说不清,道不明。工业4.0是德国联邦教研部与联邦经济技术部在2013年汉诺威工业博览会上提出的概念。它实际上是德国人为了推广他们的工业技术而提出的一个营销概念。这个概念应该说提的非常成功,仿佛一夜之间,全世界都在讲自己的产品符合工业4.0的理念。
当时德国人提的工业4.0概念中,主要是描绘了制造业的未来愿景(注意,是制造业,而不是工业,德国人在这里其实偷换了概念,工业的范畴远比制造业大得多),提出了继蒸汽机、规模化生产、电子信息技术等三次工业革命后,人类即将迎来的以生产高度数字化、网络化、机器自组织为标志的第四次工业革命。
在德国人描述的四次工业革命中,第一次是以蒸汽机为动力的机械生产设备导致的第一次工业革命,该次工业革命与18世纪末基本结束。第二次是基于劳动力分工(即流水线),以电为动力的大规模生产为核心的第二次工业革命,该次革命始于20世纪初,第三次工业革命始于20世纪70年代,其标志是电子信息技术的大规模使用使得工业自动化程度大为提高,现在,德国人认为我们进入了第四次工业革命,在本次工业革命中,软件不再仅仅是为了控制仪器或者执行具体的工作而编写的,也不再仅仅被嵌入到产品和生产系统中。产品和服务借助于互联网和其他网络服务,通过软件、电子及环境的结合,生产处全新的产品和服务。越来越多的产品功能无需操作人员介入,而是可以自主进行生产。
从这个概念可以看出,工业4.0实际上是德国等先进制造业发达国家在进行一次大的制造业升级,以期保持其在国际竞争中的地位。因此,工业4.0概念提出之后,各国纷纷跟进,美国提出了工业物联网,中国提出了工业2025,其实都是想在这一次工业革命中保持或者进一步占领国际市场,获得竞争优势。
工业4.0中涉及到的技术概念有很多,大致可以通过下面这张图来进行描述。
从底层看,工业4.0包括互联网时代的三大底层基础设施,工业物联网(这是美国人的概念)、云计算、工业大数据,在具体应用上,包括两大硬件技术3D打印和工业机器人,两大软件技术工业网络和工作自动化,同时还囊括了未来的两大技术虚拟现实和人工智能。这些技术构成了工业4.0的技术图谱。
由此可以看出,工业大数据是工业4.0的一部分,它是为工业4.0提供软件技术支撑的,也是工业4.0的核心部分。由于工业4.0的最终目的是提高企业的生产力、生产效率及生产的灵活性,但又受制于生产的复杂性和复杂生产带来的超高难度的管理,因此,现代化的生产要求从产品、工具、运输、设备的每一个环节都配备传感器,并更够通过标准协议彼此通讯,在这种情况下,企业生产就必须依赖全新的软件系统,它可以覆盖整个产品生命周期,它可以协调海量的数据流程,它可以自主控制设备进行复杂化的、自定义的生产作业,而这和核心的一切,就是工业大数据。
到今天,工业大数据的概念已将慢慢的超越了工业4.0,工业大数据既是工业4.0的核心,也在独立的发展,既有重合的部分,也有超越的部分。
不管概念如何发展,以人工智能、大数据为标志的第四次工业革命已经在我们的身边展开了,通过这一次的工业革命,我们可以进行超级复杂流程的管理、大规模生产过程的优化和决策的快速执行,实现复杂生产和个性商业活动的高度整合,使人类的生产效率再上升一个数量级,使生产力得到进一步的释放。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22