
使用R语言进行中文分词
1.准备包
①rJava包
② Rwordseg包
③Java环境
④搜狗词库(此为扩展词库)
Rwordseg包依赖于rJava包。由于Rwordseg包并没有托管在CRAN上面,而是在R-Forge上面,因此在在R软件上面直接输入install.packages("Rwordseg")会提示错误。因此,我们需要在软件菜单栏点击 程序包
选择软件库 在选择R-Forge 即可,然后输入install.packages("Rwordseg")应该就OK了。或者输入下面代码:
[plain]view plaincopy
install.packages("Rwordseg", repos = "http://R-Forge.R-project.org")
一切准备工作做好了我们就可以进行分词了。首先加载我们所需要的包。然后对“ 我非常喜欢《跟着菜鸟一起学R语言》这个微信公众号 ”这句话进行分词。
[plain]view plaincopy
library(Rwordseg)
library(rJava)
text<-"我非常喜欢《跟着菜鸟一起学R语言》这个微信公众号"
segmentCN(text)
分词结果为:
[1] "我" "非常" "喜欢" "跟" "着" "菜" "鸟" "一起" "学" "R语言" "这个" "微信" "公众" "号"
我们可以发现这个分词有问题,比如说 “菜鸟”和“公众号”是一个词,但这里却分开了。我们该怎么处理呢?Rwordseg包里面提供了一个insertWords函数,具体如下
[plain]view plaincopy
insertWords(strwords,
analyzer = get("Analyzer", envir = .RwordsegEnv),
strtype = rep("userDefine", length(strwords)),
numfreq = rep(1000, length(strwords)), save = FALSE)
这就是insertWords函数,其中save参数是指 是否把这个词保存到词典里面。
[plain]view plaincopy
insertWords(c("菜鸟","公众号"),save=TRUE)
这样的话,菜鸟 和 公众号 就成两个词了。再次运行
结果为
[1] "我" "非常" "喜欢" "跟" "着" "菜鸟" "一起" "学" "R语言" "这个" "微信" "公众号"
但是如果我们不需要“菜鸟”这个分词了怎么办,这个时候我们就可以使用deleteWords()函数来从词典中删除这个分词。
[plain]view plaincopy
deleteWords(c("菜鸟","公众号"),save=TRUE)
这次我们在看看结果。
[1] "我" "非常" "喜欢" "跟" "着" "菜" "鸟" "一起" "学" "R语言" "这个" "微信" "公众" "号"
接下来我们使用一下搜狗的扩展词库,由于电影跟新速度较快,我这里下载了搜狗的热门电影大全词库,如何加载使用搜狗词库,点击可以查看我的另一篇博客。
[plain]view plaincopy
installDict("热门电影大全.scel","movie")
59391 words were loaded! ... New dictionary 'movie' was installed!
我把下载的词库放在了当前的工作目录下面了,所以直接输入词典名,没有添加地址。加载了该词典。如果出现上面的句子则表示这个词典加载成功了,我们命名为movie。
现在我们来测试一下面这个句子: 你喜欢看最后的巫师猎人吗
[plain]view plaincopy
text2<-"你喜欢看最后的巫师猎人吗"
segmentCN(text2)
"你" "喜欢" "看" "最后的巫师猎人" "吗"
可以看到“最后的巫师猎人”是一个词,如何我们把movie这个词典删除点会怎么样呢?
[plain]view plaincopy
uninstallDict("movie")
text2<-"你喜欢看最后的巫师猎人吗"
segmentCN(text2)
[1] "你" "喜欢" "看" "最后" "的" "巫师" "猎人" "吗"
其实加载搜狗词典的话我们就不用自己定义词典,就比如前面我们往词典里面插入“菜鸟”和“微信公众号”一样。这样可以很方便的分词,也省去了自己新建词典的时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04