京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用R语言进行中文分词
1.准备包
①rJava包
② Rwordseg包
③Java环境
④搜狗词库(此为扩展词库)
Rwordseg包依赖于rJava包。由于Rwordseg包并没有托管在CRAN上面,而是在R-Forge上面,因此在在R软件上面直接输入install.packages("Rwordseg")会提示错误。因此,我们需要在软件菜单栏点击 程序包
选择软件库 在选择R-Forge 即可,然后输入install.packages("Rwordseg")应该就OK了。或者输入下面代码:
[plain]view plaincopy
install.packages("Rwordseg", repos = "http://R-Forge.R-project.org")
一切准备工作做好了我们就可以进行分词了。首先加载我们所需要的包。然后对“ 我非常喜欢《跟着菜鸟一起学R语言》这个微信公众号 ”这句话进行分词。
[plain]view plaincopy
library(Rwordseg)
library(rJava)
text<-"我非常喜欢《跟着菜鸟一起学R语言》这个微信公众号"
segmentCN(text)
分词结果为:
[1] "我" "非常" "喜欢" "跟" "着" "菜" "鸟" "一起" "学" "R语言" "这个" "微信" "公众" "号"
我们可以发现这个分词有问题,比如说 “菜鸟”和“公众号”是一个词,但这里却分开了。我们该怎么处理呢?Rwordseg包里面提供了一个insertWords函数,具体如下
[plain]view plaincopy
insertWords(strwords,
analyzer = get("Analyzer", envir = .RwordsegEnv),
strtype = rep("userDefine", length(strwords)),
numfreq = rep(1000, length(strwords)), save = FALSE)
这就是insertWords函数,其中save参数是指 是否把这个词保存到词典里面。
[plain]view plaincopy
insertWords(c("菜鸟","公众号"),save=TRUE)
这样的话,菜鸟 和 公众号 就成两个词了。再次运行
结果为
[1] "我" "非常" "喜欢" "跟" "着" "菜鸟" "一起" "学" "R语言" "这个" "微信" "公众号"
但是如果我们不需要“菜鸟”这个分词了怎么办,这个时候我们就可以使用deleteWords()函数来从词典中删除这个分词。
[plain]view plaincopy
deleteWords(c("菜鸟","公众号"),save=TRUE)
这次我们在看看结果。
[1] "我" "非常" "喜欢" "跟" "着" "菜" "鸟" "一起" "学" "R语言" "这个" "微信" "公众" "号"
接下来我们使用一下搜狗的扩展词库,由于电影跟新速度较快,我这里下载了搜狗的热门电影大全词库,如何加载使用搜狗词库,点击可以查看我的另一篇博客。
[plain]view plaincopy
installDict("热门电影大全.scel","movie")
59391 words were loaded! ... New dictionary 'movie' was installed!
我把下载的词库放在了当前的工作目录下面了,所以直接输入词典名,没有添加地址。加载了该词典。如果出现上面的句子则表示这个词典加载成功了,我们命名为movie。
现在我们来测试一下面这个句子: 你喜欢看最后的巫师猎人吗
[plain]view plaincopy
text2<-"你喜欢看最后的巫师猎人吗"
segmentCN(text2)
"你" "喜欢" "看" "最后的巫师猎人" "吗"
可以看到“最后的巫师猎人”是一个词,如何我们把movie这个词典删除点会怎么样呢?
[plain]view plaincopy
uninstallDict("movie")
text2<-"你喜欢看最后的巫师猎人吗"
segmentCN(text2)
[1] "你" "喜欢" "看" "最后" "的" "巫师" "猎人" "吗"
其实加载搜狗词典的话我们就不用自己定义词典,就比如前面我们往词典里面插入“菜鸟”和“微信公众号”一样。这样可以很方便的分词,也省去了自己新建词典的时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22