
R语言:数据处理包dplyr的函数
dplyr专注处理dataframe对象, 并提供更稳健的与其它数据库对象间的接口。
一、5个关键的数据处理函数:
select() 返回列的子集
filter() 返回行的子集
arrange() 根据一个或多个变量对行排序。
mutate() 使用已有数据创建新的列
summarise() 对各个群组汇总计算并返回一维结果。
Tips:
1、select()
Dplyr包有下列辅助函数,用于在select()中选择变量:
starts_with("X"): 以 "X"开头的变量名
ends_with("X"): 以 "X"结束的变量名
contains("X"): 包含 "X"的变量名
matches("X"): 匹配正则表达式“x"的变量名
num_range("x", 1:5): 变量名为 x01, x02, x03, x04 and x05
one_of(x): 出现在字符向量x中的所有变量名
在select()中直接使用列时不需要引用"",但使用上述辅助函数时必须引用""。
2、filter()
R 有一系列逻辑表达式可用于filter()中:
x < y;x <= y;x == y;x != y;x >= y;x > y;x %in% c(a, b, c)
示例:
filter(df, a > 0, b > 0)
filter(df, !is.na(x))
3、arrange()
arrange()默认从小到大排序,在arrange()中使用desc()作用于变量可以使之从大到小排序.
4、mutate()
mutate()允许在同一次调用中使用新变量来创建下一个变量,例如:
mutate(my_df, x = a + b, y = x + c)
5、 summarise()
R的下列聚合函数可用于 summarise()中
min(x) - 最小值.
max(x) - 最大值
mean(x) - 平均值
median(x) - 中位数
quantile(x, p) - x的第P个分位数
sd(x) - 标准差
var(x) - 方差
IQR(x) - 四分位数
diff(range(x)) - x值的范围
dplyr包自身提供了一些有用的聚合函数:
first(x) - 向量x中的第1个元素
last(x) - 向量x中的最后1个元素
nth(x, n) - 向量x中的第n个元素
n() - data.frame中的行数或 summarise() 描述的观测组的数量
n_distinct(x) - 向量x中唯一值的数量
二、管道函数%>%
dplyr包中特有的管道函数%>%,将上一个函数的输出作为下一个函数的输入。
%>%运算符允许从参数列表中提取函数的第一个参数,并放置在%>%前面。
下面两条指令相等:
mean(c(1, 2, 3, NA), na.rm = TRUE)
c(1, 2, 3, NA) %>% mean(na.rm = TRUE)
三、分组函数group_by()
对数据集定义群组。然后可对各个群组分别进行汇总统计。
通过 group_by() 添加了分组信息后,mutate(), arrange() 和 summarise() 函数会自动对这些 tbl 类数据执行分组操作。
group_by(dataframe,colnames1,colnames2,…)
四、连接数据(joins)
1、6种连接函数如下:
left_join(dataset1,dataset2)
right_join(dataset1,dataset2)
inner_join(dataset1,dataset2,by=c(“”))
full_join(dataset1,dataset2, by = c("first", "last"))
semi_join(dataset1,dataset2, by = c("first", "last"))
anti_join(dataset1,dataset2, by = c("first", "last"))
前4种属于变形连接(mutating joins),后2种属于过滤连接(filtering joins)。
semi-joins基于第二个数据集的信息来过滤第一个数据集的数据。anti-joins找出合并时哪些行不能匹配第二个数据集
2、key值
R语言的 data frames可在 row.names属性中存储重要信息,虽然不是存储数据的好方式却很常见。如果数据集的主关键字在row.names中,将难以与其他数据集连接。一种解决方法是使用tibble包(tibble:a data frame with class tbl_df)中的rownames_to_column()函数,返回该数据集的副本,并且行名作为一列增加到该数据中。
library(tibble)
rownames_to_column(data, var="name")
如果两个数据集有相同的列名,但代表的事物不同,并且by参数不包含这些重复的列名,dplyr会忽略这些列名,并对相同的列名增加.x和 .y来帮助区分列。
当两个数据集中相同的事物有不同的列名,要完成合并,将by设置为一个命名向量。向量的名字为主数据集中的列名,向量的值为第二个数据集中的列名。例如:
x %>% left_join(y, by = c("x.name" = "y.name"))
完成连接后保留主数据集中的列名。
3、多个数据集的连接
Purrr包中的 reduce()函数对多个数据集重复应用某函数,可用于连接多个数据集,与dplyr的join类函数配合使用,例如:
library(purrr)
list(data1,data2,data3) %>% reduce(left_join,by = c("first",
"last"))
五、集合操作(set operations)
dplyr提供了intersection、union和setdiff用于获得数据集的交集、并集和差集。
六、组装数据assembling data
使用如下函数:
bind_rows()
bind_cols() :将多个data frame合成单个data frame
data_frame() : 将一系列列向量组合成data frame
as_data_frame() :将list转换成data frame
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04