京公网安备 11010802034615号
经营许可证编号:京B2-20210330
汽车大数据将彻底颠覆汽车产业
国家在“十三五”期间推进的供给侧改革,将给汽车行业带来很大影响,其中最突出的表现就是汽车市场需求的变化,这就要求汽车行业、企业提供更适应市场需求的产品。
大数据在互联网、金融、交通等领域的成功应用,在带来巨大利益的同时也加快这些行业的变革升级。就汽车产业而言,我国新车销售规模连续八年蝉联全球第一,但同时面临成本上升、行业竞争加剧、政策法规趋严等一系列问题。而大数据的蓬勃发展,为汽车行业带来新的机遇,是推动汽车产业由大变强的重要因素。
汽车大数据是一个巨大的战略宝库。汽车不仅是运输工具,还是大数据的发生器和承载器,大数据在提升汽车产业的生产制造水平、改变汽车经营业务模式、改善消费者体验、推动智慧社会发展、建设汽车强国中将发挥巨大且重要的作用。
现阶段大数据正在多个业务环节推动着汽车产业进一步升级:首先,在汽车产品研发环节,大数据助力提升产品研发品质。其次,在营销环节,大数据助力汽车精准营销。第三,在使用环节,借助大数据能够准确掌握车辆位置、车辆故障、驾驶行为等信息,结合具体使用场景和互联网技术,支撑智能导航、车辆故障预警等领域拓展创新,推动建立便捷用车、经济用车、安全用车的社会用车新局面。第四,在后市场环节,以车辆识别代号为核心,以零部件编码、材料编码为主要纽带的大数据体系,使得整车与零部件信息的精确匹配成为可能,为汽车后市场的繁荣发展奠定了基础。
如今汽车产业面临成本上升、行业竞争加剧、政策法规趋严以及科技带来市场变化的多重压力。充分整合挖掘数据的价值有助于整个汽车产业调整未来的发展方向,让汽车产品变得更加环保、智能、个性化。打造在大数据领域的竞争优势,为汽车业转型升级带来新的机遇,有助于推动我国汽车产业以及经济建设的发展。
汽车业对于大数据的收集、分析和整合仍处于探索阶段,应着眼于汽车行业的长远发展,推动汽车业大数据开发共享,惠及民众;明确汽车大数据产业的发展方向,加快开发与利用,加强合作,共促汽车业和其他产业的融合发展。
谁拥有大数据谁就拥有了未来,汽车产业也不例外。汽车业大数据发展前景可期,未来,汽车将成为大数据的重要输出源,信息通信技术、新能源、新材料等与汽车产业加快融合。未来的汽车产品,将从单纯的交通工具变成大型的移动智能终端,数据非常富有挖掘价值。汽车服务业、互联网与汽车将进一步深度融合,将使便捷出行、安全驾乘、娱乐休闲等需求充分释放,消费需求的多元化将日趋明显。
随着互联网、大数据、云计算、人工智能、3D打印等技术进入汽车领域,汽车产业进入全面变革的特殊时期。能源、环境、交通拥堵、安全四大挑战倒逼汽车产业做出能源、互联、智能三大革命性变革,进而带来汽车产业的六个巨大改变:从人驾驶车转变为自动驾驶,从拥有使用转变为共享使用,从耗能机械转变为移动能源,从移动工具转变为交通服务,从信息孤岛转变为智能终端,从汽车制造转变为汽车智造。产业运转进入全新时代,汽车文明重新定义。
延伸至产业链条的各环节,智能网联汽车价值链将实现各环节的价值体量提升,从设计研发到采购、制造、销售、后市场,再到流通使用,所有的环节都在发生改变。所有的改变都与数据有关,既需要数据指导又产生新的数据,在制造以前是工业大数据,需要有科学性,在制造以后是一般的非结构性大数据,两者既相连又独立,共同形成汽车产业大数据。随着数据本身有效的挖掘,汽车产业大数据逐渐生成新的衍生品——汽车大数据产业。
大数据对汽车业极具挑战和颠覆性,大数据将让制造企业真正变成数据服务企业。现在一些车企和数据服务商已经意识到,未来,汽车产品将不再是车企的主要盈利点,其所搭载的服务以及用户的数据信息才是未来汽车生态链中的焦点。
在汽车大数据产业时代,以数据驱动的互联、互动为核心的智能制造体系即工业4.0,将覆盖汽车生产制造全领域,厂商将从集中式生产转变为分散式生产,从只有产品转变为“产品+数据”,从生产驱动价值转变为数据驱动价值,产业结构发生重大转移。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22