
sas信用评分卡之番外哑变量的生成
哑变量是:举一个例子,假设变量“职业”的取值分别为:工人、农民、学生、企业职员、其他,5种选项,我们可以增加4个哑变量来代替“职业”这个变量,分别为D1(1=工人/0=非工人)、D2(1=农民/0=非农民)、D3(1=学生/0=非学生)、D4(1=企业职员/0=非企业职员),最后一个选项“其他”的信息已经包含在这4个变量中了,所以不需要再增加一个D5(1=其他/0=非其他)了。这个过程就是引入哑变量的过程,其实在结合分析中,就是利用哑变量来分析各个属性的效用值的。以上这段话是我在博客那边粘过来的,是个粉丝都知道我的画风不是这种。
今天介绍的就是哑变量啦。其实我个人是不爱用哑变量的,对于一些可以解释得过的变量还可以,就是怕衍生出来的变量你都不敢用,你知道吧。譬如吧,职业的变量,是不是工人的变量,然后你要是弄完模型,说是工人的加分,不是工人的反而是减分,那你在宣讲的时候,你要这么讲出来,人家产品怎么看你这个模型,你这会来解释什么工人信用比较好都没什么用了。这是一个不恰当的比喻哈,毕竟众生平等嘛。今天的代码我没在我的工作中用过,因为本身我的基层变量已经很多,除非我走投无路,不然我不会一次性生成这么多哑变量。因为生成评分卡那个代码我的粉丝疯涨,我好怕粉丝后面发现我就是个弱鸡。
%macropub_gg(data,id,var,out);
proc sort data=&data.(where=(&var.^='')) out=data1(keep=&id.&var.) nodupkey; by &var.;
run;
data &out.;
set &data.;
keep appl_id &var.;
run;
data data1_1;
set data1(keep=&var.);
prefix_&var.=compress("&var."||&var.);
run;
run;
data _null_;
set data1_1;
call symput (compress("var"||left(_n_)),compress(prefix_&var.));
call symput(compress("n"),compress(_n_));
run;
%put&var1. &var2.;
%doi=1%to&n.;
data data2;
set RONG_ZX_1
if &var.="&&var&i."then &&var&i.=1;
else &&var&i.=0;
keep &id.&&var&i.;
run;
proc sort data=data2; by &id.;run;
proc sort data=&out.; by &id.;run;
data &out.;
merge &out.(in=a) data2(in=b);
by &id.;
if a;
run;
%end;
%mend;
pub_gg(data=,id=, var=,out=);
pub_gg(data=,id=, var=,out=);
data:填入你的原始数据集
id:填入数据的主键
var:填入你要变成哑变量的主变量。
Out:输出数据集
结果数据集:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12