京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sas信用评分卡之番外哑变量的生成
哑变量是:举一个例子,假设变量“职业”的取值分别为:工人、农民、学生、企业职员、其他,5种选项,我们可以增加4个哑变量来代替“职业”这个变量,分别为D1(1=工人/0=非工人)、D2(1=农民/0=非农民)、D3(1=学生/0=非学生)、D4(1=企业职员/0=非企业职员),最后一个选项“其他”的信息已经包含在这4个变量中了,所以不需要再增加一个D5(1=其他/0=非其他)了。这个过程就是引入哑变量的过程,其实在结合分析中,就是利用哑变量来分析各个属性的效用值的。以上这段话是我在博客那边粘过来的,是个粉丝都知道我的画风不是这种。
今天介绍的就是哑变量啦。其实我个人是不爱用哑变量的,对于一些可以解释得过的变量还可以,就是怕衍生出来的变量你都不敢用,你知道吧。譬如吧,职业的变量,是不是工人的变量,然后你要是弄完模型,说是工人的加分,不是工人的反而是减分,那你在宣讲的时候,你要这么讲出来,人家产品怎么看你这个模型,你这会来解释什么工人信用比较好都没什么用了。这是一个不恰当的比喻哈,毕竟众生平等嘛。今天的代码我没在我的工作中用过,因为本身我的基层变量已经很多,除非我走投无路,不然我不会一次性生成这么多哑变量。因为生成评分卡那个代码我的粉丝疯涨,我好怕粉丝后面发现我就是个弱鸡。
%macropub_gg(data,id,var,out);
proc sort data=&data.(where=(&var.^='')) out=data1(keep=&id.&var.) nodupkey; by &var.;
run;
data &out.;
set &data.;
keep appl_id &var.;
run;
data data1_1;
set data1(keep=&var.);
prefix_&var.=compress("&var."||&var.);
run;
run;
data _null_;
set data1_1;
call symput (compress("var"||left(_n_)),compress(prefix_&var.));
call symput(compress("n"),compress(_n_));
run;
%put&var1. &var2.;
%doi=1%to&n.;
data data2;
set RONG_ZX_1
if &var.="&&var&i."then &&var&i.=1;
else &&var&i.=0;
keep &id.&&var&i.;
run;
proc sort data=data2; by &id.;run;
proc sort data=&out.; by &id.;run;
data &out.;
merge &out.(in=a) data2(in=b);
by &id.;
if a;
run;
%end;
%mend;
pub_gg(data=,id=, var=,out=);
pub_gg(data=,id=, var=,out=);
data:填入你的原始数据集
id:填入数据的主键
var:填入你要变成哑变量的主变量。
Out:输出数据集
结果数据集:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27