
大数据能否挽救统计信任危机
大数据正成为科博会、京交会上的新热点,而备受企业推崇的大数据也有望在国家统计工作中“大显身手”。国家统计局局长马建堂近日表示,国家统计局正组织力量研究如何在统计工作中利用大数据。业内分析,统计工作中利用大数据有助于降低调查成本,提高统计的及时性和准确性,可以提高统计质量,减轻外界对于统计数据准确性的质疑,但要想根本解决统计数据的信用危机,还需要改变惟GDP的政绩考核体系。
大数据的挑战
虽然大数据目前没有统一定义,但市场普遍认为,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理、处理的数据集合。从产业角度,常常把这些数据与采集它们的工具、平台、分析系统一起被称为“大数据”。
而大数据的应用已经渗透到日常生活中。专家认为,互联网上每时每刻生成了大量交易和价格信息,如淘宝网上许许多多的店主开了许许多多的网店,经营着许许多多各种各样的商品,一个综合性的淘宝价格指数应运而生,虽然商品种类大大少于CPI,但由于实时产生的大量基础信息做基础,会吸引越来越多的人关注,将对政府统计的惟一性乃至共识性产生极大挑战。这也意味着,随着大数据时代的到来,政府统计部门不再是惟一的海量数据拥有者。
统计方式的变革
马建堂此前在全国统计工作会议上强调,“大数据时代”的来临,对统计数据的生产方式带来了很大的挑战。统计部门要利用海量数据并对其进行标准化处理,发掘这一数据宝库,认真把握好这一促进政府统计改革发展的难得机遇。
据了解,政府统计一般是在普查掌握总体的基础上,对一定规模限额以上的单位全额调查,对以下的单位进行抽样,各级政府统计机构对本地区数据质量各负其责。但符合大数据概念的交易记录,无论是成交额、成交量,还是各类商品的价格,都是作为一个总体存在。
“通过利用客观存在的海量数据,能够有效降低调查成本。大数据化的采集方式减少了层层上报环节,有助于提高数据及时性、准确性。同时,通过对海量数据的分析、整理,可以对经济社会运行情况进行多方面印证,更加真实合理。”北京方迪经济发展研究院副院长赵燕霞说。
一位业内专家举例称,比如每月公布的社会消费品零售额数据,除了几个基础的分类数据外,还可以对各行业收集的数据具体分析,研究餐饮消费结构、金银珠宝消费与经济关系、日用品消费占比变化等,通过这些可以看出消费趋势性变化,为扩大内需提供重要的数据支撑。
信任危机的化解
国家统计局表现出的利用大数据倾向,除了顺应目前发展趋势外,也被外界认为将有助挽救目前存在的数据“信用”危机。近年来,工资“被增长”、CPI“被下降”、房价“被降低”、失业率“被减少”……因百姓的切身感受与统计数据之间的差异,以及国家和地方之间GDP数据严重不符,都导致了市场对统计数据的质疑。
统计学专家、中国社科院世界经济与政治研究所世界经济统计分析研究室副主任刘仕国认为,大数据要求数据种类越来越多样化,而且对统计过程透明性也越来越高,从理论上看,这样可以提高统计调查的准确性、透明性,可以消减民众对于统计数据的质疑。
清华大学中国与世界研究中心教授袁钢明则认为,除了在统计方式更加准确外,还需改变惟GDP的政绩考核体系,减少政绩考核中GDP占比,逐渐提高环境、民生等因素的占比,这样才能减少地方对统计的干预,保障统计的独立性和准确性。北京商报记者 王晔君
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19