京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人工智能创新有望解决大数据难题
我经常遇到着迷于深度学习、压缩分类和自动驾驶汽车的数据科学团队,它们渴望运用当下流行的算法。比如说,我最近在与一家大型金融机构合作,共同加强其网络安全;我们甚至还没有开始基本的监控,我团队中的一名数据科学家就在谈论K-均值聚类和神经网络。
我们要始终记得先要了解问题和机会,然后运用正确的系统或算法。有时候,自学习神经网络可能是最佳的选择;而有时候,你得采用经典的技术:专家系统。
专家系统是一种基于规则的引擎,它基于专家们的集体智慧。它是人工智能(AI)领域历史最悠久的创新之一,实际应用可以追溯到上世纪70年代。
数据科学界经常开玩笑说,专家系统好比是过时的恐龙,它们很有意思,但是就现代应用而言不切实际。我完全不同意,人工智能领域没有哪一项进步完全取 代得了专家系统的功能和效用。此外,由于专家系统已存在相当一段长的时间,你可以运用久经考验的最佳实践。下面是使用专家系统、让你开始入手的六个最佳实 践。
1. 征集需求
构建一套专家系统最困难的部分就是,与实际的专家们见面讨论。与任何最终用户见面讨论已够困难了,而你项目需要的那些专家是非常特殊的最终用户,每个人都想要与之讨论。在征集需求之前,要征得管理层的同意,批准你与专家们见面讨论。
比如说,我在接触一家跨国交易处理公司时,整个公司只有五六个人知道交易网络的内部结构。如果你没有让管理层承诺专家到时抽出时间,那么你休想与他们谈论15分钟以上。
2. 进行分析
尽量少花时间在分析上。忍住对专家访谈进行定性分析的冲动,这没有必要。
专家系统旨在进行自己的分析。艰苦的工作在分析中并不多,难就难在框架的搭建和微调上。在这方面,它类似神经网络。你的任务就是告诉系统如何思考,然后让系统为自己处理思考任务。
3. 设计框架
将冗余性(verbosity)设计到你的专家系统框架中。专家系统由两个基本部分组成:知识库和推理引擎。知识库负责存储关于设计领域的事实,而推理引擎负责将归纳(正向链)推理和演绎(反向链)推理运用到知识库中的事实。
这两个系统都必须精心设计,让你可以了解专家系统在想什么。你需要非常详细地了解专家系统知道的情况,以及它如何得出结论。先进系统更侧重于采用自然语言界面――这是我支持的一个最佳实践。
4. 开发系统
开发速度要快。与分析一样,如果你在开发方面花了大量的时间,那么做法不当。你唯一要开发的东西就是框架(知识库和推理引擎)。暂时尽量避免编写程序代码。
然而,要从长计议。在程序代码可以取代框架推理的地方构建接口。虽然将程序代码换成基于框架的推理有悖于大众的看法,但是一旦规则得到了全面审查,它就是你专家系统的一种实际延伸。程序代码让你有机会大大加快执行,这对许多应用程序(比如嵌入式系统)来说更切实际。
5. 训练系统
不要低估了合理训练专家系统所需要投入的时间、精力和专家数量。我使用“训练”这个词很宽泛――专家系统严格上来说并不是一种学习系统。但是,决定 专家系统成败的却是领域知识以及它如何进行推理。专家必须是这个过程的一部分,因为一旦馈送了需求征集阶段收集的信息,专家就需要微调引擎。
这时候,情况变得有意思起来。让一个专家解释过程原本够难的,更不用说让一组专家就合适的过程达成共识了。到头来这是值得的,但是勤奋和耐心在这个阶段会给你带来好处。
6. 改进系统
请专家委员会做以后的审查。一旦你的专家系统部署到位,很难长时间留住你的专家;他们需要定期审查实际的结论,确保你的系统仍尽到作为专家的责任。 事先获得他们的这种承诺。就像你在需求征集阶段那样征得管理层的同意――可以这么说,专家系统稳定下来后,至少每年每季度你需要一次得到他们的关注。在你 开始动手之前,确保每个人对这个想法意见一致。
结束语
尽管种种新奇的系统和算法涌入数据科学界,但使用一种有几十年历史,并久经考验的解决方案:专家系统根本不会错。别因为设计的简洁性而误以为它过时或无效,事实恰恰相反。
只要你能找到合适的专家,就可以立即搭建起一套专家系统;与此同时,其他数据科学家仍在为压缩分类绞尽脑汁。掌握了这里给出的几个要点,以及你自己汲取的经验教训,你可能自己都没意识到,就成了专家系统的专业人士。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15