
大数据隐私:隐私原理与模型的挑战
我们先来看一个真实的案例:美国零售百货集团Target曾经研发出一个模型,用来预测消费者是否怀孕,从而根据该模型的预测结果向潜在客户发送其婴儿产品相关的打折券。这个模型应用不久,一位父亲质问Target是否在鼓励他的女儿怀孕,因为他发现自己还在读高中的女儿收到了此类婴儿服装打折券。但没过多久,事实浮出水面,他的女儿确实已经怀孕了,只是这位父亲当时没有发现。上述案例中,这位女儿的隐私便没有得到适当的保护。
“大数据”是近几年来科技界的高频词汇,然而大数据时代下隐私保护的缺失也成为我们面临的严峻挑战。我们知道,多数情况下,数据的收集并不是由数据产生者,即数据主体(如消费者)直接提供的,而是伴随交易过程(如网上购物)产生,或者由一些免费服务平台(如免费邮箱、社交网络等)提供,再就是一些服务要求的必要的数据输入(如GPS导航系统为了提供周边交通信息,需要使用者提供当前目地理位置的数据)。这些数据的收集和使用会产生一定的价值,然而数据隐私的保护却尚未得到管理。
在Big Data Privacy: Challenges to Privacy Principles and Models这篇文章中,作者详细的描述了大数据和隐私保护之间的冲突源头,指出匿名化是目前缓解这一冲突的可行解决办法,提出了衡量一个隐私模型能否满足大数据要求的三大特性:可组合,低计算代价,可联系。最后应用这一标准对两种主要的匿名化方法,k-匿名和ε-差分匿名进行了评价,给出它们能够很好地满足大数据隐私需求的结论。
用于保护个人可识别信息(PII)的若干原则
目前尚未有完善的方法来保护大数据数据主体的隐私。作者提出,抛开大数据名头不谈,先来看看以下这些应用于若干条例、用于保护个人可识别信息(PII)的一些原则:合法、有许可、目的受限、必要且数据最小化、透明并开放、保障个人权利、信息安全、可信、及设计和默认提供的数据保护。
合法:数据收集必须得到数据发生主体的同意,或是它的处理必须源于合同或法律的需要,符合数据主体的利益,公众的利益,或者是满足数据处理商的需要并且和主体的利益相一致。
有许可:主体给定的许可必须简洁,具体,信息充分明了。
目的受限:在收集数据前,确保数据收集的目是合法的并且是具体说明的。
必要且数据最小化:只收集与使用目的相关的数据。除此之外,数据只能在必要情况下保留。
透明并开放:以数据发生主体可以接受和理解的方式,告知其数据的收集和处理过程。
保障个人权利:主体应拥有使用,修改甚至删除数据的基本权利。
信息安全:必须保证数据不会受到未经授权情况下对数据的使用、篡改、做其他处理、甚至丢失或销毁等这些情况的发生。
可信:数据收集者或者处理者应明确并遵循上述原则。
设计和默认提供的数据保护:数据的隐私保护从一开始就是系统内置的,而不是后期才添加的功能。
潜在冲突
如果没有匿名化处理,上述原则和大数据使用之间存在以下潜在冲突:
目的受限:隐私保护要求的是目的具体,而在大数据方面,却常常存在数据二次使用情况,甚至在收集期间,可能目的性就并不明确。
许可:要求主体发出的许可简洁,具体。而大数据方面,如果数据收集目的不是明确的,那么主体连许可都不可能发出。
合法:若大数据在目的限制性和许可两方面都存在问题的话,法律性就更是个问题。
必要和数据最小化:要求的是仅收集必要的数据并尽可能的不收集不必要的数据,而且数据保留有时间限制。可是大数据本身就是为了潜在需要,不间断的收集并积累大量数据。
个人权利:要求主体有权使用、修改和删除数据。可是在大数据情况下,主体可能连他的数据或者数据已经被收集都不知道,更别说主体会想到使用、修改和删除数据了。
现有的几种观点
针对上述冲突,作者列举了几种现有观点: 有人提出,为了避免阻挠科技进步,隐私保护应该只注重可能泄露隐私的部分数据而不是数据收集过程。相反,也有人提出,正是数据的收集过程存在隐私泄露隐患,因为一旦数据被收集了,许多潜在的威胁就会显现,例如数据遭破坏,内部员工滥用数据,数据二次使用,公司改变数据的使用意图,政府任意调用数据等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26