
大数据隐私:隐私原理与模型的挑战
我们先来看一个真实的案例:美国零售百货集团Target曾经研发出一个模型,用来预测消费者是否怀孕,从而根据该模型的预测结果向潜在客户发送其婴儿产品相关的打折券。这个模型应用不久,一位父亲质问Target是否在鼓励他的女儿怀孕,因为他发现自己还在读高中的女儿收到了此类婴儿服装打折券。但没过多久,事实浮出水面,他的女儿确实已经怀孕了,只是这位父亲当时没有发现。上述案例中,这位女儿的隐私便没有得到适当的保护。
“大数据”是近几年来科技界的高频词汇,然而大数据时代下隐私保护的缺失也成为我们面临的严峻挑战。我们知道,多数情况下,数据的收集并不是由数据产生者,即数据主体(如消费者)直接提供的,而是伴随交易过程(如网上购物)产生,或者由一些免费服务平台(如免费邮箱、社交网络等)提供,再就是一些服务要求的必要的数据输入(如GPS导航系统为了提供周边交通信息,需要使用者提供当前目地理位置的数据)。这些数据的收集和使用会产生一定的价值,然而数据隐私的保护却尚未得到管理。
在Big Data Privacy: Challenges to Privacy Principles and Models这篇文章中,作者详细的描述了大数据和隐私保护之间的冲突源头,指出匿名化是目前缓解这一冲突的可行解决办法,提出了衡量一个隐私模型能否满足大数据要求的三大特性:可组合,低计算代价,可联系。最后应用这一标准对两种主要的匿名化方法,k-匿名和ε-差分匿名进行了评价,给出它们能够很好地满足大数据隐私需求的结论。
用于保护个人可识别信息(PII)的若干原则
目前尚未有完善的方法来保护大数据数据主体的隐私。作者提出,抛开大数据名头不谈,先来看看以下这些应用于若干条例、用于保护个人可识别信息(PII)的一些原则:合法、有许可、目的受限、必要且数据最小化、透明并开放、保障个人权利、信息安全、可信、及设计和默认提供的数据保护。
合法:数据收集必须得到数据发生主体的同意,或是它的处理必须源于合同或法律的需要,符合数据主体的利益,公众的利益,或者是满足数据处理商的需要并且和主体的利益相一致。
有许可:主体给定的许可必须简洁,具体,信息充分明了。
目的受限:在收集数据前,确保数据收集的目是合法的并且是具体说明的。
必要且数据最小化:只收集与使用目的相关的数据。除此之外,数据只能在必要情况下保留。
透明并开放:以数据发生主体可以接受和理解的方式,告知其数据的收集和处理过程。
保障个人权利:主体应拥有使用,修改甚至删除数据的基本权利。
信息安全:必须保证数据不会受到未经授权情况下对数据的使用、篡改、做其他处理、甚至丢失或销毁等这些情况的发生。
可信:数据收集者或者处理者应明确并遵循上述原则。
设计和默认提供的数据保护:数据的隐私保护从一开始就是系统内置的,而不是后期才添加的功能。
潜在冲突
如果没有匿名化处理,上述原则和大数据使用之间存在以下潜在冲突:
目的受限:隐私保护要求的是目的具体,而在大数据方面,却常常存在数据二次使用情况,甚至在收集期间,可能目的性就并不明确。
许可:要求主体发出的许可简洁,具体。而大数据方面,如果数据收集目的不是明确的,那么主体连许可都不可能发出。
合法:若大数据在目的限制性和许可两方面都存在问题的话,法律性就更是个问题。
必要和数据最小化:要求的是仅收集必要的数据并尽可能的不收集不必要的数据,而且数据保留有时间限制。可是大数据本身就是为了潜在需要,不间断的收集并积累大量数据。
个人权利:要求主体有权使用、修改和删除数据。可是在大数据情况下,主体可能连他的数据或者数据已经被收集都不知道,更别说主体会想到使用、修改和删除数据了。
现有的几种观点
针对上述冲突,作者列举了几种现有观点: 有人提出,为了避免阻挠科技进步,隐私保护应该只注重可能泄露隐私的部分数据而不是数据收集过程。相反,也有人提出,正是数据的收集过程存在隐私泄露隐患,因为一旦数据被收集了,许多潜在的威胁就会显现,例如数据遭破坏,内部员工滥用数据,数据二次使用,公司改变数据的使用意图,政府任意调用数据等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23