京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据隐私:隐私原理与模型的挑战
我们先来看一个真实的案例:美国零售百货集团Target曾经研发出一个模型,用来预测消费者是否怀孕,从而根据该模型的预测结果向潜在客户发送其婴儿产品相关的打折券。这个模型应用不久,一位父亲质问Target是否在鼓励他的女儿怀孕,因为他发现自己还在读高中的女儿收到了此类婴儿服装打折券。但没过多久,事实浮出水面,他的女儿确实已经怀孕了,只是这位父亲当时没有发现。上述案例中,这位女儿的隐私便没有得到适当的保护。
“大数据”是近几年来科技界的高频词汇,然而大数据时代下隐私保护的缺失也成为我们面临的严峻挑战。我们知道,多数情况下,数据的收集并不是由数据产生者,即数据主体(如消费者)直接提供的,而是伴随交易过程(如网上购物)产生,或者由一些免费服务平台(如免费邮箱、社交网络等)提供,再就是一些服务要求的必要的数据输入(如GPS导航系统为了提供周边交通信息,需要使用者提供当前目地理位置的数据)。这些数据的收集和使用会产生一定的价值,然而数据隐私的保护却尚未得到管理。
在Big Data Privacy: Challenges to Privacy Principles and Models这篇文章中,作者详细的描述了大数据和隐私保护之间的冲突源头,指出匿名化是目前缓解这一冲突的可行解决办法,提出了衡量一个隐私模型能否满足大数据要求的三大特性:可组合,低计算代价,可联系。最后应用这一标准对两种主要的匿名化方法,k-匿名和ε-差分匿名进行了评价,给出它们能够很好地满足大数据隐私需求的结论。
用于保护个人可识别信息(PII)的若干原则
目前尚未有完善的方法来保护大数据数据主体的隐私。作者提出,抛开大数据名头不谈,先来看看以下这些应用于若干条例、用于保护个人可识别信息(PII)的一些原则:合法、有许可、目的受限、必要且数据最小化、透明并开放、保障个人权利、信息安全、可信、及设计和默认提供的数据保护。
合法:数据收集必须得到数据发生主体的同意,或是它的处理必须源于合同或法律的需要,符合数据主体的利益,公众的利益,或者是满足数据处理商的需要并且和主体的利益相一致。
有许可:主体给定的许可必须简洁,具体,信息充分明了。
目的受限:在收集数据前,确保数据收集的目是合法的并且是具体说明的。
必要且数据最小化:只收集与使用目的相关的数据。除此之外,数据只能在必要情况下保留。
透明并开放:以数据发生主体可以接受和理解的方式,告知其数据的收集和处理过程。
保障个人权利:主体应拥有使用,修改甚至删除数据的基本权利。
信息安全:必须保证数据不会受到未经授权情况下对数据的使用、篡改、做其他处理、甚至丢失或销毁等这些情况的发生。
可信:数据收集者或者处理者应明确并遵循上述原则。
设计和默认提供的数据保护:数据的隐私保护从一开始就是系统内置的,而不是后期才添加的功能。
潜在冲突
如果没有匿名化处理,上述原则和大数据使用之间存在以下潜在冲突:
目的受限:隐私保护要求的是目的具体,而在大数据方面,却常常存在数据二次使用情况,甚至在收集期间,可能目的性就并不明确。
许可:要求主体发出的许可简洁,具体。而大数据方面,如果数据收集目的不是明确的,那么主体连许可都不可能发出。
合法:若大数据在目的限制性和许可两方面都存在问题的话,法律性就更是个问题。
必要和数据最小化:要求的是仅收集必要的数据并尽可能的不收集不必要的数据,而且数据保留有时间限制。可是大数据本身就是为了潜在需要,不间断的收集并积累大量数据。
个人权利:要求主体有权使用、修改和删除数据。可是在大数据情况下,主体可能连他的数据或者数据已经被收集都不知道,更别说主体会想到使用、修改和删除数据了。
现有的几种观点
针对上述冲突,作者列举了几种现有观点: 有人提出,为了避免阻挠科技进步,隐私保护应该只注重可能泄露隐私的部分数据而不是数据收集过程。相反,也有人提出,正是数据的收集过程存在隐私泄露隐患,因为一旦数据被收集了,许多潜在的威胁就会显现,例如数据遭破坏,内部员工滥用数据,数据二次使用,公司改变数据的使用意图,政府任意调用数据等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12