
SPSS常见函数及使用方法
SPSS函数是一个常用程序,并且利用一个或多个自变量(参数)来执行。每个SPSS函数均有一个关键名称(keywordname),且绝不能写错。
通常,函数的格式为:函数名称(自变量,自变量,……),某些函数可能只含有一个自变量,而有些函数则可能含有多个自变量,当一个函数含有多个自变量时,各自变量间用逗号“,”隔开。
而函数的自变量通常又可分为以下三种:
1)常数,如SQRT(100);
2)变量名称,如MEAN(VAR1,VAR2,VAR3);
3)表达式,如MIN(30,SQRT(100))。
总之,SPSS函数和我们平时EXCEL里面函数格式规则并无差别。
SPSS提供了180多种函数,共可分为十多类(SPSS 17.0中大大小小分了18类)。和EXCEL一样,我们也不可能记住所有函数,只要知道一些常用函数,至于其他函数要用的时候再去查找也不迟,下面本人(原作者不详,此文章有不同版本的来源)将列举一些常用函数:
1算数函数
2统计函数
3缺失值函数
注:X1为使用者界定缺失值,X2为系统缺失值,X3为非缺失值
4字符串型函数
5时间日期函数
注:1 要正确显示以上函数值,必须先赋予其SPSS得日期型变量(DATA)格式,假设以上日期用mm/dd/yy格式显示,时间则用hh:mm:ss格式表示
21<=d<=31、1<=m<=12、1<=w<=52、1<=q<=4
6其他函数
SPSS除了上述函数外,尚有日期和时间转换函数(YOMODA\CTMIESDAYS\CTIMEHOURS\MDAYS等)、连续几率密度函数(CDF\BINOM\CHISQ\CDF\EXP\LOGISTIC等),此外还有NORMAL(stddev)可产生平均数为0,标准差为stddev的正态分布随机数字。UNIFORM(max)可产生平均数为0与max间呈均等分布的随机数字。
PS:还可以像EXCEL一样利用脚本编写自定义函数,目前SPSS支持python,Sax Basic(一种与VB兼容的编程语言)等语言,利用new--script可编写出自己需要的函数。script界面如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04