京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1、变量的类型:
注:想要变类型的话,直接用左键点变量,然后点右键(选择你想要的类型点左键)
2、output的数据形式设置,菜单操作见:(format是数据形式,Decimal是小数点的位数)
nnnn。简单数值。
nnnn%。在值末尾加上百分比符号。
自动。已定义变量显示格式,包括小数位数。
N=nnnn。在值前面显示 N=。在未显示摘要统计的表中,此格式可用于计数、有效 N 和总计 N。
(nnnn)。所有值都用括号括起。
(nnnn)(负值)。只有负值用括号括起。
(nnnn%)。所有值都用括号括起,并在值末尾加上一个百分比符号。
n,nnn.n。逗号格式。无论区域设置如何,均使用逗号作为分组分隔符,使用句点作为小数指示符。
n.nnn,n。点格式。无论区域设置如何,均使用句点作为分组分隔符,使用逗号作为小数指示符。
$n,nnn.n。美元格式。在值前面显示美元符号;无论区域设置如何,均使用逗号作为分组分隔符,使用句点作为小数指示符。
CCA、CCB、CCC、CCD、CCE。定制货币格式。在列表中显示每个定制货币的当前定义格式。在“选项”对话框(“编辑”菜单,“选项”)的“货币”选项卡中定义这些格式
3、常用的检验:
独立性检验 (卡方验证)。此选项为表生成独立性卡方检验,该表的行和列中至少同时有一个分类变量。还可以指定检验的 alpha 水平,alpha 水平应该是一个大于 0 且小于 1 的值。
比较列的平均值 (t-检验)。此选项为表生成列均值相等性成对检验,该表的列中至少有一个分类变量且行中至少有一个刻度变量。可以使用 Bonferroni 方法选择是否调整检验的 p 值。此外,还可以指定检验的 alpha 水平,alpha 水平应该是一个大于 0 且小于 1 的值。最后,虽然均值检验的方差始终只基于多重响应检验的比较类别;但对于序数分类变量,可只根据比较的类别或所有类别估计该变量。
比较列的比例 (z-检验)。此选项为表生成列比例相等性成对检验,该表的行和列中至少同时有一个类别变量。可以使用 Bonferroni 方法选择是否调整检验的 p 值。还可以指定检验的 alpha 水平,alpha 水平应该是一个大于 0 且小于 1 的值。
4、常用的统计量:
均值。算术平均值;总和除以个案数。
中位数。一个值,大于该值和小于该值的个案数各占一半,第 50 个百分位。
众数。出现频率最高的值。如果存在出现频率相等的值,则显示最小值。
最小值。最小(最低)值。
最大值。最大(最高)值。
缺失。缺失值(用户和系统缺失值)计数。
百分位数。可以包含第 5 个、第 25 个、第 75 个、第 95 个和/或第 99 个百分位。
范围。最大值和最小值之差。
均值的标准误。取自同一分布的样本与样本之间的均值之差的测量。它可以用来粗略地将观察到的均值与假设值进行比较(即,如果差与标准误的比值小于 –2 或大于 +2,则可以断定两个值不同)。
标准差。对围绕均值的离差的测量。在正态分布中,68% 的个案在均值的一个标准差范围内,95% 的个案在均值的两个标准差范围内。例如,在正态分布(方差的平方根)中,如果平均年龄为 45,标准差为 10,则 95% 的个案将处于 25 到 65 之间。
和。值的总和。
合计百分比。基于总和的百分比。适用于行和列(在子表中)、所有行和列(跨子表)、层、子表和整个表。
总计 N。无缺失值、用户缺失值和系统缺失值的计数。不包含手动排除的类别(用户缺失类别除外)中的个案。
有效 N。无缺失值的计数。不包含手动排除的类别(用户缺失类别除外)中的个案。
方差。对围绕均值的离差的测量,值等于与均值的差的平方和除以个案数减一。度量方差的单位是变量本身的单位的平方(标准差的平方)。
有效 N 百分比。即使在表中包含用户缺失类别,也会从简单百分比基数中移去具有用户缺失值的个案。
计数。每个表单元格中的个案数或多重响应集的响应数。
未加权的计数。每个表单元格中的未加权的个案数。仅在加权有效时,此统计量才与计数有区别。
列百分比。每一列中的百分比。子表的每一列中的百分比(简单百分比)的总和为 100%。通常仅在具有分类行 变量时,列百分比才有用。
行百分比。每一行中的百分比。子表的每一行中的百分比(简单百分比)的总和为 100%。通常仅在具有分类列 变量时,行百分比才有用。
分层行和分层列百分比。嵌套表中所有子表的行或列百分比(简单百分比)的总和为 100%。如果表包含层,则每个层中所有嵌套子表的行或列百分比的总和为 100%。
层百分比。每个层中的百分比。对于简单百分比,当前可见层中的单元格百分比的总和为 100%。如果没有任何层变量,则此百分比等于表百分比。
表百分比。每个单元格中的百分比基于整个表。所有单元格百分比都基于相同的个案总数且总和为 100%(简单百分比)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06