京公网安备 11010802034615号
经营许可证编号:京B2-20210330
今天不谈电商,只聊搜狐的大数据实践
整天看到、听到的都是各个电商企业的大数据实践,今天换个口味,聊聊互联网行业,谈谁呢?搜狐。虽然从业务线来划分,搜狐有焦点、搜狐汽车、畅言、说吧……,不过在笔者看来这些统一都可以归结为互联网,业务模式基本是服务读者,靠的是广告和内容。因此,如何精准地投放广告、推送内容就显得尤为关键,而这正是搜狐大数据所要做的。
按搜狐大数据平台负责人、研发中心高级经理、搜狐-英特尔联合创新实验室搜狐负责人彭毅的话说,随着大数据的热度越来越高,大家对数据的价值越来越重视,运用数据指导业务的发展,满足用户不断的新需要成为搜狐业务发展的新动力。在这样的背景下,搜狐成立了一个大数据项目小组,内部代号“大耳狐”。
据彭毅介绍,最开始他们做的主要是为了满足业务部门对于数据处理平台的计算需求,通俗地讲就是提供平台支撑。不过随着业务的不断发展,只做这些已经难以满足实际的业务需求,所以他们现在也在做更多的扩展,比如在满足底层平台技术和业务线需求的前提下,他们正在考虑深度学习方面的研究。
言归正传,还是从搜狐正式开始做大数据方面的工作,也就是大数据项目组的成立说起。从去年年初成立到现在不过一年多的时间,这一年彭毅和他的团队可以说做了不少工作,从搭建平台,包括技术选型(Hadoop、Spark等)、硬件选型到平台部署、应用调试。这其中,他们参考了很多像Facebook、推特等广泛使用大数据技术厂商所公开的一些资料,并最终在英特尔的协助下确定了现有的硬件选型,包括CPU型号、内存大小、硬盘个数、网络吞吐量等均做了权衡。
在此基础上,搜狐部署了其基于开源Hadoop版本做的搜狐自有的Hadoop平台。彭毅表示,在底层调优上,包括计算力的高效使用,以及如何在英特尔架构平台把性能发挥到极致,双方进行了非常深入的合作。目前,经过几次扩容升级,当前搜狐大数据平台已经有1000台物理机左右的规模,现有平台数据在30PB。
看得出大数据在搜狐内部需求的迅猛增长,在采访中,搜狐大数据平台核心技术人员、搜狐研发中心高级研究员王帅表示,他们每天产生的日志数据在20TB左右,产生的各种数据在60TB-200TB之间,虽然无法与BAT同日而语,但就整个业界平均水平而言,搜狐每天所产生的量是非常可观的,到这也就不难理解为什么他们在短短一年间就进行了几次扩容。
在采访中,王帅还特别举了一个大数据实际应用的例子,广告的精准投放。他说,用户在使用各种产品时会产生各种行为数据,比如点击了什么、浏览了什么、搜索了什么,这些数据可以实时收集,然后经过卡夫卡集群做中间的数据调度,再把它们导入Hadoop集群,业务部门根据收集回来的数据做精准计算,像用户画像之类的,然后根据结果反推,进行精准的广告投放。
看起来似乎并不难,其实并不容易,最简单地讲,每个用户每天的数据都在发生变化,所以每天都需要重新计算,这个计算量可想而知。当然,这只是其中一个方面,在谈到做大数据过程中所遇到的挑战时,彭毅也是百感交集。他说,几乎每一块,包括平台、软件、硬件、底层架构都可能遇到难题,比如搜狐遇到一个很实际的问题就是从旧有的Hadoop平台迁移到新的平台上,这其中他们费了不少力气。
而这其实也正是笔者相对即将应用大数据的用户所说的话,大数据应用绝对不是像很多人说说那么简单,做起来会涉及到方方面面的内容,所以选几个靠谱的合作商还是很有必要的。
最后分享一下搜狐大数据团队的人员构成,1000台机器的集群,猜猜有多少人?在维护这个平台的大概只有两三个人,总的项目组成员也不过十几个。据彭毅介绍,得益于英特尔的协助以及大耳狐平台的开发,他们只有十几个人就能完成这些研发、维护的工作。其中这十几个人中有一部分负责和大数据平台相关的维护工作,他们的职责是让整个集群的运维管理更智能化;另一部分主要是做Hadoop大数据相关的技术研究,包括兼容性、前瞻性(大数据技术的演进)等,还有最后一部分是面向用户的,如何更好地结合用户需求做一些优化、调整。
“通过使用我们的产品,为用户提供更为精准的内容,是作为搜狐这样一个媒体公司一直以来追求的目标”,彭毅这样总结他们大数据应用的目标。而这或许应该是大数据对所有用户的最终价值体现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22