京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据未来对于金融的真正价值远大于你我的想象,因为大数据和金融的核心价值是相同的,只有六个字——资源优化配置。
我们先讲大数据这一边,无论是大数据在农业的应用也好,工业的应用也好,抑或是在金融行业的应用也好,最终都是通过大数据技术来获知事情发展的真相,最终利用这个“真相”来更加合理的配置资源。
讲到这里,很多金融行业的专家肯定觉得似曾相识,因为金融的定义与其十分相像,教科书上是这么定义“金融”这两个词的:金融就是对现有资源进行重新整合之后,实现价值和利润的等效流通。在投资过程中,我们一次又一次的希望发现价值洼地,投资一个又一个有成长性的项目,不正是一次又一次的进行着资源的优化配置,将资金流向更具潜力的企业和项目吗?
而大数据正是这样一种神奇的技术,通过全量的数据挖掘对全部样本进行分析,得出事情发展的客观事实,准确的反映事物发展的趋势,这样神奇的功能,不正是金融行业急需的神奇技能吗?我一直认为大数据的最大魅力在于开启了人类的“上帝视角”,人类从一个前所未有的角度俯瞰着这个世界,知道全国乃至全世界的商品流动情况,知道每个商圈的繁荣情况,知道全球的航空业发展状况等等等等,而这一切,都可以作为我们判断未来经济趋势的最重要根据,这是人类以前从未有过的预测能力。
下面让我们的“上帝视角”落地,讲一讲大数据技术是怎么一步步实现资源优化配置的。
具体来说,要实现大数据的核心价值,还需要前两个重要的步骤,第一步是通过“众包”的形式收集海量数据,第二步是通过大数据的技术途径进行“全量数据挖掘”,最后利用分析结果进行“资源优化配置”。
只说概念大家肯定没法直观的理解上面的观点,那就举几个咱们都接触过的例子讲一讲大数据是怎么通过这三步发挥核心价值的?
第一步、通过“众包”产生和收集数据
高德地图、百度地图都有实时路况的功能,但大家有没有想过实时路况的数据是怎么收集的?实际上经过了三个阶段,开始是跟交通口的一些公司合作,获取交通流量监测设备的数据,这个方法缺陷很明显,一个是受制于人,一个是想扩大监测范围就要部署大量设备,费时费力,而且还受法律制约。于是一些专门做路况的公司开始用出租车当浮动车收集数据。但这种办法还是无法覆盖大量的大小路段,随着移动互联网的普及,高德地图的APP能够实时上传大量机动车的速度和位置信息,经过去噪和综合分析,就形成了覆盖率极高的实时路况信息。这就是一个典型的“众包”过程。
严谨一点来说,众包指的是一个公司或机构把过去由员工执行的工作任务,以自由自愿的形式外包给非特定的(而且通常是大型的)大众网络的做法。
大数据的“海量数据”就是由“众包”产生的。广义上,用户的行为数据,各种传感器的数据,也都是“众包”的形式,只要是由过去集中式的产生模式扩散到分布式的模式,都是众包的形式。
第二步、通过“全量数据挖掘”获知“真相”
阿里巴巴-数据可视化
讲第二个特点之前希望大家能看一下上面的视频,通过分析阿里巴巴全年的数据得到的阿里巴巴的世界贸易与全国贸易的趋势。视频中体现的不仅是阿里巴巴集团的运营情况,其实也部分反映了整个中国的经济运行情况。而且这些数据不是通过采样得来的,就是真真切切的“全量数据”。我们再也不用通过“管中窥豹”的形式来推测全局,而是直接通过“上帝视角”来窥视真相。这就是大数据的魅力,我们获得了前所未有的获取真相的能力,而且对于大型互联网公司来说,即使是PB级别的数据分析也是准实时的,我们下一个小时就能够得知上一个小时的全量数据分析结果,这样的能力是前所未有的。
多谈几句最近互联网行业的“凛冬将至”,从哪开始的呢?阿里校招的缩编,而阿里毫无疑问是最清楚目前中国经济运行情况的,如果阿里有此判断,那说明经济的冬天可能真的要来了。
第三步 大数据的核心价值——“资源优化配置”
前段时间,滴滴打车曾通过投票和订单分析的方式得出了北上广深四地的加班大楼排行榜,敝司不幸排名第三,但事实真的是即使加班很晚也很难打到车啊啊!所以滴滴打车更名为“滴滴出行”之后,也抛出了他们伟大的愿景,那就是利用大数据分析实时综合调度“快车”、“专车”、“出租车”、“顺风车”甚至是滴滴巴士的资源,实现全局的交通资源优化。事实也是如此,滴滴的司机们越来越多的需要完成“指派任务”,而不是集中去抢高净值客户。也许对于个别单体来说他们的利益降低了,但全局的资源配置却避免了全局的资源浪费和过度竞争,无疑大大提高了交通资源的使用效率。
所以我们说,基于大数据分析的结果,进行资源优化配置,才是大数据应用的落地点和真正价值。
而“资源优化配置”的价值,又远远超出我们能够想象的层面,在资本寒冬即将来临的大背景下,利用大数据实现资源的高效利用,显得更加重要。广告行业利用DMP、DSP进行广告的精准投放,房地产行业利用大数据分析价值洼地,宜信利用大数据建设征信系统降低坏账率,券商陆续推出大数据基金,全部都是广义的“资源优化配置”的体现。大数据也远远不再停留在学术和“分析现象”的阶段,而是在各行各业实现了落地并发挥着非常非常重要的价值。
我是在互联网广告行业从事程序化购买系统建设的,而这个行业也是大数据最先发挥价值的地方。举个最简单的例子来说明大数据在广告资源优化配置上的作用。
宝洁集团是我们的客户,而宝洁的产品有非常强的用户性别倾向性,护舒宝的广告就应该投给女性,投给男性就是赤裸裸的浪费。而吉列的目标用户就只是男性。之前保洁集团是怎么做广告的?就是海投品牌广告,不分性别的海投,那这个做法在投放之前就已经确切无疑的知道有一半广告费用时浪费的。但没有办法,因为我们没有大数据技术来发掘用户的性别。
而随着DMP(Data Management Platform)技术的不断成熟,越来越多的广告主建立起自己的用户数据中心,可以不断积累客户的各种用户行为,进而判断出用户的性别,再通过DSP(Demand Side Platform)系统定向投放,最终可以为宝洁节省一半的广告预算。
上面讲的所有只为帮大家理解一句话,大数据的终极核心价值就在于“资源优化配置”。而金融的“资源优化配置”价值是毋庸置疑的,二者有如此同根同源的核心价值,化学反应还会远吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01