京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以大数据思维推动创新发展
贵州在大数据引领产业升级、大数据推动政府转型、大数据服务社会民生等方面积极探索,提炼了贵州发展大数据的核心理念,进行了理念创新,实施了围绕“云上贵州”系统平台的“7+N”云工程建设,推动实现政务数据的“聚、通、用”,在全国率先建设国家大数据综合试验区,进行大数据应用领域的探索与创新,实现了应用创新,探索利用数据的整合应用,实施“数据铁笼”工程,探索实现政务工作的有效监管,实现了围绕大数据的政务治理的创新。在不断地实践与探索过程中,大数据的潜在价值不断地被发掘和应用。
党的十八届五中全会提出的创新、协调、绿色、开放、共享五大发展理念,把创新放在首要位置。面对贵州经济社会发展的现状,贵州创造性地提出发展以大数据为引领的电子信息产业来推动贵州的创新发展,最终实现“走出一条有别于东部、不同于西部其他省份的发展新路”。
以建设国家大数据综合试验区为契机,贵州未来将以大数据思维推动创新发展,一是以大数据推动科技创新,二是以大数据推动政府治理体制创新,三是以大数据推动应用创新与服务创新,四是以大数据推动制度创新。
以大数据推动科技创新,主要是指通过大数据在各行业、各领域的有效应用,推动两个层面的科技创新,推动围绕大数据采集、处理与分析、可视化、安全与隐私保护、交易等方面的理论创新、应用创新和集成创新,围绕贵州的“7+N”云工程,突破云计算和大数据应用过程中的共性关键技术问题;围绕各行业、各领域进行数据融合与业务创新,推动转型升级,企业能否不断积累自己的“数据资产”,有效利用好自己的“数据资产”,推动企业在营销、客户关系管理等方面的创新和业务提升成为未来企业发展和转型升级的必然趋势。
以大数据推动政府治理体制创新,主要是指围绕贵州的“云上贵州”系统平台建设,推动政务数据资源的云上汇聚、共享和应用,进而推动政府治理体制的创新。大数据对促进政府科学决策、加强公共服务和社会管理能力具有巨大帮助。政府战略和政策的制定,有赖于对现实情况的准确把握、对实施进程的跟踪、对执行效果的及时获知,以便科学预测、灵活调整,而大数据的有效应用可以很好地实现这一点,且不是以人的意志为转移的,大数据使决策的基础从局部信息走向全局信息,从定性考量走向定量判断,从滞后反馈到及时预警,从部门分割到信息协同,大数据的思维和手段可以促进政府资源的整合,数据的互通、开放与有效利用,从而有效变革政府治理模式,为政府的科学决策提供有力支撑,最终提升政府的治理能力。
以大数据推动应用创新与服务创新,主要是指通过大数据提升社会领域的应用创新和服务创新,坚持以应用需求和民生服务为导向,推动大数据与社会各领域尤其是民生服务领域的深度融合和应用示范,鼓励满足市场需求的各类社会领域大数据开发利用和模式创新,实施一批大数据社会应用和民生服务的示范工程,支持公共安全、医疗健康、生态环境保护、社保、教育等重点领域和特色产业大数据应用创新与模式创新。在此过程中,充分发挥政府在大数据社会领域应用的导向性作用,发挥市场的主体作用,引导和鼓励社会各方参与,大力推动政府和社会信息资源共建共享和开发利用,形成优势互补、多元参与、开放竞争的发展格局,推动让公众有“体验感”和“满足感”的应用创新和服务创新。
以大数据推动制度创新,主要是指围绕大数据的发展,逐步探索建立适应大数据发展的管理机制、考核机制、资金保障机制、人才培养机制,推动围绕大数据发展的制度创新。探索适应政府信息化变革、推动大数据应用的新的管理机制;建立科学合理、行之有效的考核机制,推动大数据在政府各部门的深入推进与应用;实施科学精准的资金保障机制,立足贵州经济社会发展的现状,科学预算、精准使用大数据建设和发展经费;构建行之有效的人才培养体系,抢占数据科学发展的战略高点,为大数据产业发展提供人才保障。
当前,贵州以“大扶贫”、“大数据”、“大生态”三大战略为主线,大力推动贵州省经济社会的创新发展和跨越式发展,我们应以发展大数据产业为契机,以大数据思维推动在各个领域的创新发展,为贵州省实现弯道取直、跨越发展、同步小康提供强力支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28