
对于大数据,王政表示:“大数据时代,资产管理的一个风尚就是由艺术式投资变为科学式投资,大数据可以做以前他们想做却做不了的事,如对市场情绪的搜集和判断。通过大数据,可以尽可能大范围地搜索新闻信息,包括行业层面或者公司机构,来判断市场情绪,对这个行业是乐观还是悲观,对公司是看好还是不看好。”
一个人的心理或许很难捉摸,但某些外在信息显露汇集而成的市场趋势恰恰是资产投资管理的判断标准。如广发基金和百度合作推出的一款大数据基金,就是建立在百度搜索的海量数据信息基础之上,选取成分股来构成的。王政说没有人会想到互联网搜索数据也可以成为构建指数的一个方式,但大数据做到了。
在这样一位多年从事资产管理工作的老手看来,大数据给以基金为代表的资产管理行业带来了“质的飞跃”。王政总结了资产管理领域的两次飞跃。在计算机之前,投资单纯依靠人的判断,根据行业经验和专业积累,判断市场行情趋势,构成自己的投资逻辑。计算机的出现改变了原有的研究方法,投资人员总结出普遍的市场规律,通过计算机进行量化投资开始盛行,这是一次飞跃。大数据时代实现了从小样本到全样本信息的搜集,充分利用海量数据,借助机器学习充分挖掘有价值的市场因子,开启智能投资新时代,这是第二次飞跃。
大数据带来的量变是否一定会带来质变是个未知数,数据的广度和准确度显然并不一定成正比。“这考验的就是数据服务提供商挖掘分析数据的能力,因为数据中存在一些无用的"噪音",我们要尽可能剔除它们,提炼出有价值的信息。”王政将那些干扰性的数据形象地称之为“噪音”。
另一个排除干扰的解决方案叫“机器学习”—machine
learning。机器在海量信息存储的基础上,通过不断地“学习”,机器的“思考”能力—根据过往数据总结的经验有效判断市场行情的变化—得以渐渐形成。
可以看出,大数据背后依托的不仅是海量数据,更重要的是分析挖掘数据并精准应用的能力,智能计算机技术是构成这种能力的关键。机器取代人类,在资产投资领域,似乎比科幻片中机器人占领世界的可能性要大的多。在这样一个趋势下,未来某个阶段,是否所有投资者都能变成王亚伟呢?王政说,理论上,市场越有效,“王亚伟”反而越不会出现,因为所有参与者的表现都一样。当然,这种终极场景就像经济学中提到的“完全竞争市场”一样,在现实中难以真实存在。“终究机器是由人设计的,人建立模型的能力不同,这就决定了市场的非有效性。”人在大数据时代扮演的是什么角色?王政打了一个比方:“大数据是乐器,人就是演奏者,人要设计机器,训练机器,提升机器的学习能力。”
人抓取运用数据的能力,决定了大数据时代的意义。王政提到了一些国外大数据服务同行的做法,从中也能看到数据的微妙之处。他说国外一家专业数据服务公司,通过在发电厂附近的居民区内安装探测器,来统计电厂的输送电量,观察发电情况。“用电量从宏观上可以判断一个国家经济的运转情况,从微观上可以判断一户人家的消费水平。同样,如果要判断一家超市的销售情况,可以统计其车库每日进出车辆的数量。”王政强调这种大数据分析的优势在于,专业投资机构得到这样的数据,可以在官方统计结果公布前,提前对市场变化做出预期判断,从而先人一步把握投资机会。
数据背后隐藏的信息量,就是投资逻辑建立的基础。而在投资之外,王政对保险行业大数据应用同样看好。同样是建立在数理统计模型上的保险产品,大数据的引入,对其定价模式产生了翻天覆地的变化。“比如车险,以前定价比较统一,就是因为无法精确地判断每个投保人的具体风险情况,如今通过车载设备提供的数据,可以有效了解驾驶员的行为、驾驶技术和习惯,再据此判断其驾驶发生风险的可能性是大还是小。”王政表示,保险行业是未来大数据重点拓展的一大方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08