
探索医疗行业的大数据之路
大数据时代,数据是最重要的生产资料。数据的价值不仅是通过对数据的分析挖掘所获得的信息,也会在商业、科技决策,优化资源配置,节省资本等方面具有无可比拟的价值和潜力。
现如今,中国和西方发达国家一样步入大数据时代。庞大的人口基数让中国数据量和优势是其他国家无法比拟的。截至2016年4月,中国的医疗机构总数为98.8万家,2016年全国诊疗人数6.6亿人次。
中国的医疗机构每天都有大量的有关疾病、医疗、药品临床试验和健康等数据产生、存储和流动。目前,中国一般的医疗机构每年大约产生1TB~20TB的相关医疗数据,一些大型医疗机构每年产生的数据量甚至达到了300TB~1PB。可以预测,随着中国医疗机构医疗信息化的普及和电子病历的推广,以及更多医用级别可穿戴智能设备的问世,届时中国每年产生的医疗数据将暴增。
如何应用及其意义
主要指的是将各个层次的医疗信息和数据,利用互联网以及大数据技术进行挖掘和分析,为医疗服务的提升提供有价值的依据,使医疗行业运营更高效,服务更精准,最终降低患者的医疗支出。
大数据如何用于互联网医疗
大数据在医疗领域中所扮演的角色正在被不断地放大,在医疗领域的基本应用过程:
1、搜集和聚合来自各个来源的巨量患者信息;
2、以各种目的导向出发,分析搜集到的信息,比如优化患者的诊疗、提高医疗体系的效率;
3、应用数据分析的结果,改善患者的治疗,提高医疗系统的投资回报率;
大数据在医疗领域中的应用意义
1、通过对临床数据q的分析,对患者进行更有前瞻性的治疗和照护,提高疾病的治疗效果;
2、通过对最新的数据库的分析提高对临床决策的支持;
3、通过对统计工具和算法的使用来改善临床试验的设计;
4、通过对大数据集的分析为个性化医疗提供支持;
5、通过优化业务决策支持,以确保医疗资源的适当分配;
“互联网+”促进社会全产业升级之后,最终受益的是人。一方面体现在“互联网+”的实现离不开人的参与,人是连接互联网与产业的关键点;另一方面体现在产业升级后的各种高科技及智能技术为人们带来更高的生活质量。
国内医疗数据公司概况
1、企业数量、体量及主营业务
目前在国内医疗健康数据行业参与经营的320家公司,其中医疗信息化公司大约有177家,这类公司的比重最大,上市公司/大公司多集中在这一领域,同时还聚集了大量创业公司。专科医疗信息化公司大约有48家,这个领域以创业公司为主。科研类医疗大数据公司大约有17家,其中包括专科类医疗大数据,如肿瘤大数据公司,专门向药企、器械企业提供临床试验软件和数据的公司。药事服务和医保数据公司大约有23家。
2、公司分布地域
从地域看,这些医疗健康数据公司多集中在长三角和珠三角地区。这或许和这些地域原本互联网IT公司众多有关。从这些公司的所在地看,北京是全国医疗健康数据公司发展的重镇,聚集的医疗健康数据公司最多,有59家;其次是上海,有26家;深圳位居第三,有25家公司。另外,杭州、广州、成都、南京的医疗健康数据公司数量也都多于10家。
3、行业竞争状况
医疗大数据的商业价值巨大,获取其商业运营权需要满足两个条件:通过医改把现有医疗行业的利益链条打破,使医院有动力共享数据;通过医院、医保的信息化建设获取医疗大数据,并将其标准化。
国内医疗大数据应用方向
1、对传统医疗的优化
即服务于医疗机构的大数据应用(包含医院、险企、药企、医疗器械企业等传统医疗行业机构)。是对于传统医疗服务的问题和弊端,利用互联网及大数据技术加以改善和提升,例如,提升患者到医院就诊的流程、优化医院信息管理以及提升临床诊疗效果等。
2、对传统医疗的补充
即服务于大众医疗健康的大数据应用。是针对传统医疗服务未覆盖到的市场需求,利用互联网和大数据技术和服务加以补充,例如:诊前分诊、就诊数据跟踪及信息反馈等个人健康管理服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29