京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据、人工智能下的物联网生态
物联网的发展离不开大数据,依靠大数据可以提供足够有利的资源;同时,大数据也推动了物联网的发展。新时代的发展对科技提出了更高的要求,这是一种智慧化的新形态,其外在表现是物联网,而其内涵就表现为大数据。
人工智能技术的出现将联网物体智能化,人与物之间的交流变得有意义。随着信息科技的发展从互联网、移动互联网到物联网的延伸之际,作为支撑物联网应用后端服务的人工智能技术,是物联网时代最核心的一环。尤其在各种设备联网后,在设备与“人”和“物”的交互模式上,众多厂商开始聚焦智能语音交互,其中,亚马逊所搭载智能语音助手Alexa的Echo智能音箱取得巨大成功,引发了业内的高度关注,部分厂商也选择搭载亚马逊Alexa、谷歌、科大讯飞等语音助手技术,从而使得物联网时代下的智慧生活成为现实。
从互联网到移动互联网,再到物联网
第一代互联网是机器和机器的联网。在那个时代你即使用互联网,你的人也就是在某一段时间通过计算机连到网上,大部分时候你不在互联网上。而且计算机是找IP地址,那是当时的一个特点。
到了第二代互联网,人和人的联网,移动互联网。用户随时随刻被挂在互联网上。过去你下了班离开计算机,无论是开车还是坐地铁回家都不在互联网上。你有一些应酬也好,回家辅导孩子也好也不在互联网上,晚上10点钟回去之后查邮件,你才在互联网。而今天你是随时随地在互联网上,所以这也是数据量为什么这么大的原因。
第三代互联网,万物互联网,也就是物联网。IDC预测,到2020年底,物联网设备规模将达到2120亿,包括我们想不到的:压缩机、发电机、涡轮机、鼓风机、石油钻采设备、传送带、内燃机车和医疗成像扫描仪等等。嵌入式传感器在这些机器和设备中利用物联网来传输度量为震动、温度、湿度、风速、位置、燃料消耗、辐射水平的这些数据。
从弱人工智能到强人工智能,再到超人工智能
从60年前到现在,人工智能一直在发展,它可以被分为三层:第一层是弱人工智能,第二层是强人工智能,第三层是超人工智能。
第一层,弱人工智能。每个人都在用,今天拍个照片,女孩子们美图秀秀修一修,发出去,这是弱人工智能。
第二层,强人工智能。比如计算机能理解人类的语言,能够识别,还能翻译。如果愿意把它翻译成英文,现在不需要同声翻译,直接用计算机翻译过去了,美国人和英国人都听得懂。它还可以干别的事,比如计算机能回答问题,能写作。在华尔街日报或者是纽约时报,今天大部分和财经类新闻有关的这种报道中,大部分文章是计算机写的,不是人写的。
第三层,超人工智能。当我们在讨论大脑的能力之时,我们通常会用IQ来衡量。普通人的IQ是100,爱因斯坦、达芬奇这样的天才的IQ大概在200左右。不过,同样是IQ这个指标,30年后,电脑会达到多少?应该是10000。人的IQ高于200叫天才,那么IQ达到10000的家伙,我们就应该称呼它为超级智能了。
数据在大爆发
人工智能之所以在最近一两年爆发,很大一部分原因是背后有海量的数据支持。
以前很多数据,其实没有移动互联网没有收集上传,没法存储,今天这个都变成了一个可能。在过去三年里,人类收集到的数据总和超过人类历史上6千年,从出现文字到现在6千年就有了数据记载。过去三年里,数据量超过了人类6千年的总和。这些海量的数据并非凭空而来,这得益于传感器以及IoT设备的数据采集能力。
云端是基石
物联网产业看上去很美,听起来高大上,但产业规模发展还需时日,在物联网感知、传输和应用三个层次中,核心在围绕“数据”挖掘所产生的全新商业应用。作为物联网的感知层,利用传感器、RFID/Wi-Fi/GPRS等无线连接技术收集数据,并通过传输层至“云端”,这个时候数据处理、挖掘就尤为重要,也是物联网产业的核心价值点。
而作为承载后端的“云”端,不仅为海量数据提供存储,也为数据提供后端运算大脑,可以说云计算是物联网产业发展的基石。
未来的物联网生态
未来的城市是怎么样呢,你可以把整个城市想象成一台超级电脑,你的每一个汽车是超级电脑,是一个终端。它有一个统一优化的交通方式,而且你自己出行的时间和你今天工作安排是相关的,不用每天早上都9点钟到办公室。今天会议11点钟开始,10点半去就可以了,你上班就省了一小时。
而智慧城市只是物联网的一个应用场景。大数据、人工智能以及物联网将革新制造业、节省医疗保健和生活成本,组成一个由神经系统相互连接的世界。
未来,一切设备互联,所有设备连接到互联网,让万物互联成为可能,物联网将无所不能!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15