
大数据、人工智能下的物联网生态
物联网的发展离不开大数据,依靠大数据可以提供足够有利的资源;同时,大数据也推动了物联网的发展。新时代的发展对科技提出了更高的要求,这是一种智慧化的新形态,其外在表现是物联网,而其内涵就表现为大数据。
人工智能技术的出现将联网物体智能化,人与物之间的交流变得有意义。随着信息科技的发展从互联网、移动互联网到物联网的延伸之际,作为支撑物联网应用后端服务的人工智能技术,是物联网时代最核心的一环。尤其在各种设备联网后,在设备与“人”和“物”的交互模式上,众多厂商开始聚焦智能语音交互,其中,亚马逊所搭载智能语音助手Alexa的Echo智能音箱取得巨大成功,引发了业内的高度关注,部分厂商也选择搭载亚马逊Alexa、谷歌、科大讯飞等语音助手技术,从而使得物联网时代下的智慧生活成为现实。
从互联网到移动互联网,再到物联网
第一代互联网是机器和机器的联网。在那个时代你即使用互联网,你的人也就是在某一段时间通过计算机连到网上,大部分时候你不在互联网上。而且计算机是找IP地址,那是当时的一个特点。
到了第二代互联网,人和人的联网,移动互联网。用户随时随刻被挂在互联网上。过去你下了班离开计算机,无论是开车还是坐地铁回家都不在互联网上。你有一些应酬也好,回家辅导孩子也好也不在互联网上,晚上10点钟回去之后查邮件,你才在互联网。而今天你是随时随地在互联网上,所以这也是数据量为什么这么大的原因。
第三代互联网,万物互联网,也就是物联网。IDC预测,到2020年底,物联网设备规模将达到2120亿,包括我们想不到的:压缩机、发电机、涡轮机、鼓风机、石油钻采设备、传送带、内燃机车和医疗成像扫描仪等等。嵌入式传感器在这些机器和设备中利用物联网来传输度量为震动、温度、湿度、风速、位置、燃料消耗、辐射水平的这些数据。
从弱人工智能到强人工智能,再到超人工智能
从60年前到现在,人工智能一直在发展,它可以被分为三层:第一层是弱人工智能,第二层是强人工智能,第三层是超人工智能。
第一层,弱人工智能。每个人都在用,今天拍个照片,女孩子们美图秀秀修一修,发出去,这是弱人工智能。
第二层,强人工智能。比如计算机能理解人类的语言,能够识别,还能翻译。如果愿意把它翻译成英文,现在不需要同声翻译,直接用计算机翻译过去了,美国人和英国人都听得懂。它还可以干别的事,比如计算机能回答问题,能写作。在华尔街日报或者是纽约时报,今天大部分和财经类新闻有关的这种报道中,大部分文章是计算机写的,不是人写的。
第三层,超人工智能。当我们在讨论大脑的能力之时,我们通常会用IQ来衡量。普通人的IQ是100,爱因斯坦、达芬奇这样的天才的IQ大概在200左右。不过,同样是IQ这个指标,30年后,电脑会达到多少?应该是10000。人的IQ高于200叫天才,那么IQ达到10000的家伙,我们就应该称呼它为超级智能了。
数据在大爆发
人工智能之所以在最近一两年爆发,很大一部分原因是背后有海量的数据支持。
以前很多数据,其实没有移动互联网没有收集上传,没法存储,今天这个都变成了一个可能。在过去三年里,人类收集到的数据总和超过人类历史上6千年,从出现文字到现在6千年就有了数据记载。过去三年里,数据量超过了人类6千年的总和。这些海量的数据并非凭空而来,这得益于传感器以及IoT设备的数据采集能力。
云端是基石
物联网产业看上去很美,听起来高大上,但产业规模发展还需时日,在物联网感知、传输和应用三个层次中,核心在围绕“数据”挖掘所产生的全新商业应用。作为物联网的感知层,利用传感器、RFID/Wi-Fi/GPRS等无线连接技术收集数据,并通过传输层至“云端”,这个时候数据处理、挖掘就尤为重要,也是物联网产业的核心价值点。
而作为承载后端的“云”端,不仅为海量数据提供存储,也为数据提供后端运算大脑,可以说云计算是物联网产业发展的基石。
未来的物联网生态
未来的城市是怎么样呢,你可以把整个城市想象成一台超级电脑,你的每一个汽车是超级电脑,是一个终端。它有一个统一优化的交通方式,而且你自己出行的时间和你今天工作安排是相关的,不用每天早上都9点钟到办公室。今天会议11点钟开始,10点半去就可以了,你上班就省了一小时。
而智慧城市只是物联网的一个应用场景。大数据、人工智能以及物联网将革新制造业、节省医疗保健和生活成本,组成一个由神经系统相互连接的世界。
未来,一切设备互联,所有设备连接到互联网,让万物互联成为可能,物联网将无所不能!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15