京公网安备 11010802034615号
经营许可证编号:京B2-20210330
序贯模型=关联规则+时间因素。
今天下午基本上把通过arulesSequences来进行序列模式挖掘搞明白了,晚上又把arulesSequences中最重要的函数cspade查看了一下。Mark一下。
还是先简单写一个模式挖掘的例子。
1、数据准备
假设数据存放在E盘下的test.txt,而且E盘中的数据为:
1 10 2 C D A F H E
1 15 3 A B C E A F
1 20 3 A B F D C F
1 25 4 A C D F D D
2 15 3 A B F
2 20 1 E
3 10 3 B F
4 10 3 D G H
4 20 2 B F
4 25 3 A G H F
4 30 12 A H H H A F F F A G G G
数据比zaki稍微复杂一些,不过只是多添加了一些个别内容。
2、建模
[html] view plain copy
print?
>x=read_baskets(con="E:/zaki.txt",info=c("sequenceID","eventID","SIZE"))
>s1 <- cspade(x, parameter = list(support = 0.6,maxlen=3), control = list(verbose = TRUE))
>as(s1,"data.frame")
主要就这么三步,就完成了序列模式挖掘。现在需要看一下核心的函数cspade()。
3、cspade函数解释
根据文档,cspade函数结构如下:
[html] view plain copy
print?
cspade(data, parameter = NULL, control = NULL, tmpdir = tempdir())
其实,参数data没啥可说的,就导入transactions类型的数据就可以了。
parameter是设定各种参数,这个还需要认真了解一下。
parameter中,可选的参数有如下几个:
support:0-1之间的一个数值,代表得到的高频序列的最小支持度。
支持度其实是这样计算的:看上面的data中有4个序列,比如我们要计算{A}的支持度,则直接看{A}在4个序列中出现过几次,用次数再除以4就得到了支持度。至于一次订单中出现多少次A,则对序列挖掘是没啥影响的。
maxsize:一个整数值,代表在寻找高频序列的过程中,任意一个序列里面的每一个元素的最多能有几个项。
举个例子, <{D,H},{B,F},{A}> 是我们通过序列挖掘得到的一个序列s,那么序列s包含3个元素element,其中第一个元素又包含2个项item。通过设定maxsize,可以在序列挖掘中设定1对1或多对1的不同挖掘方式。
maxlen:一个整数值,代表挖掘的序列最大可以是多长,也即一个序列最多可以有几个元素。
比如,如果s1 <- cspade(x, parameter = list(support = 0.6,maxlen=2), control = list(verbose = TRUE)) ,那么最终得到的序列可能为: <{D,H},{B}><{A,F,H},{A,F}>
因此,通过maxlen参数可以去挖掘较短的序列。
mingap:一个整数值,确定两个连续的订单之间的最小时间差值,默认为none。
maxgap:一个整数值,确定两个连续的订单之间的最大时间差值,默认为none。
maxwin:一个整数值,确定一个序列中任意两个订单之间的最大时间差值,默认为none。
control其实是对内存了什么的控制,一般用不到,第四个也是用不到。因此,cspade函数主要就parameter的设定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05