京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:人工智能越来越近,智能理财还远吗
楼市于近期经历了一阵“涌动”之后,不少人的投资理财方向发生了转变,同时随着央行加息政策的信号不断释放,许多人士抛开“刚需”的房子,“理投”目光再次转向股票、基金、期货、外汇等方面。这样说有些片面?却也不尽然,起码在大环境的影响下已经出现了这样的端倪。无独有偶,金融市场的另一个发展趋势表现在“智能投顾”上,这种在线金融管理服务模式或将在两三年内得到全面普及。通俗来讲,机器 “理投”并不再是梦,“智能投顾”时代即将到来。
言当其时则应言明其事,我们看好“智能投顾”源于它是现代金融经济发展的必然产物,更是Fintech创新的新阶段。通过以下几个方面来的解析不难发现,“智能投顾”在国内已经具备了开花结果的“土壤”。
大数据时代丰富“互联网金融”形态
当我们打开“外卖”APP,输入地址后,系统自动推荐附近的美食,订过几次餐后,APP就可以时不时的发送符合你“口味”的美食信息……谁都知道,这是大数据的智慧和力量。当今社会,大数据已经渗透到电子商务、O2O、物流配送等各个领域,金融市场也不例外。正如曾经我们对“互联网金融”概念的理解可能仅仅停留在“在线支付工具”、“P2P平台”等,虽然这些新型产物的形态有好有坏,但Ta们都是大数据时代的产物。同样,“智能投顾”的出现,也必将进一步丰富“互联网金融”的形态。
相比人工“理投”顾问服务,“智能投顾”更能彰显大数据的价值。不难看出,机器人理投顾问产品在基于客户自身的理财需求提供投资顾问服务时,正因为通过科学的数据计算,为客户搭建一个客观的投资数据模型,从而减少了人为投资顾问服务中出现的信任、情绪、利益冲突等问题,这对于任何投资者或机构而言都将是更加理想的服务模式,而且“智能投顾”服务成本低但效率极高,同时可“多资产”操作。就好像“附近的美食”一样,与其有人凭借个人感受给你推荐,当然不不上下载一款外卖APP。
“智能投顾”响应政策 推动市场前景明朗化
某种意义上,“智能投顾”的兴起离不开人工智能掀起的新一轮互联网变革浪潮。国家“十三五”战略规划中首次纳入人工智能,规划指出2018
年目标形成千亿级规模市场。而去年5月份开始,国家四部委更是颁布了《“互联网+"人工智能三年行动实施方案》,明确提出要培育发展人工智能新兴产业、推进重点领域智能产品创新、提升终端产品智能化水平。至此之后,无人驾驶、指纹识别等一系列创新科技被提出,人工智能离我们越来越近。“互联网金融”在人工智能的政策推动下有了“智能投顾”的成果,且市场前景更加明朗化。
数据统计显示,未来十年内“智能投顾”的市场总额将达到5万亿美元。咨询机构更是认为,未来五年“智能投顾”的市场复合增长率将达到68%,到2020年,“智能投顾”行业的资产管理规模将突破2.2万亿美元。可以说,在人工智能技术高速发展的带动下,“智能投顾”已经将“互联网金融”市场引领到一个新的阶段,成为投资个人或机构顺应时代潮流的选择。
国内主流“智能投顾”平台领跑Fintech创新
或许我们都没想到,自从2013年余额宝横空出世后,人们的理财意识开始“萌芽”,继而大批的互联网理财产品涌入市场。必须承认,任何一块“蓝海”,总要有主流“开拓者”带来信心。“智能投顾”市场更是如此,业内人士一致看好“智能投顾”的原因也基于目前国内已经出现了相对成熟的“智能投顾”机构来领跑Fintech创新。调查了解到,当下深受欢迎的“智能投顾”平台包括摩羯智投、富善投资、储财云智投、汇财国际、蓝海智投等。
不可避免,无论是投资人还是经纪公司,大家最为关心的还是“智能投顾”平台带来的效益。对比来看,主流平台各有优势,诸如招商银行的摩羯智投拥有大批存量客户,但收益率相对偏低;而富善投资已经在业内有了较高知名度,从而加入门槛也在升高;储财云智投的成长速度很快,创新性的技术革命也让其在2016年脱颖而出,稳定年化收益率达20%;

“理投”人群的接受度日益提高
任何行业涌现新兴分支市场“蓝海”时,最不容忽视的应该是消费群体。就当下“智能投顾”在国内“迈步”的阶段而言,受众集中在中产人群中。这样一来,“智能投顾”就无法回避一些人对其未来普及程度的质疑。但是我们要认识到,80、90后年轻人群作为互联网“原住民”正在走向“智能投顾”领域,Ta们日益成为社会消费群体的中坚力量,也是中产人群的活跃群体,这一点从购物平台、互联网理财产品的用户统计中已经得到确认。
国外比较典型的“智能投顾”平台Kensho现如今已经拥有庞大的用户群体,几乎在投资人群中得到普及。而国内“智能投顾”平台也值得期待,正如“储财云智投”提出要打造中国自己的“Kensho”提供全民参与成为“合伙人”的智投平台。以相关机构对“智能投顾”的目标受众来推算,中国年收入在6万-600万之间的有投资资产人群中,拥有95万亿可支配资产。所谓的中产阶级,已经超过了1亿人。而随着80、90后年轻人群加入到中产“大军”的步伐变快,“智能投顾”的接受度会日益提高。
小 结:
“智能投顾”离我们远吗?通过以上几个方面的分析与了解,我们不难看出机器理财已不再是梦想。或许“智能投顾”市场还将经历行业标准的塑造、技术创新、乃至产生完全符合国内金融行情的“智能投顾”模式等一系列挑战,不过我们有理由相信,在当前互联金融科技持续创新、国家政策正向引导的大背景下,故事的谱写正当其时,值得期待……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27