京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:人工智能越来越近,智能理财还远吗
楼市于近期经历了一阵“涌动”之后,不少人的投资理财方向发生了转变,同时随着央行加息政策的信号不断释放,许多人士抛开“刚需”的房子,“理投”目光再次转向股票、基金、期货、外汇等方面。这样说有些片面?却也不尽然,起码在大环境的影响下已经出现了这样的端倪。无独有偶,金融市场的另一个发展趋势表现在“智能投顾”上,这种在线金融管理服务模式或将在两三年内得到全面普及。通俗来讲,机器 “理投”并不再是梦,“智能投顾”时代即将到来。
言当其时则应言明其事,我们看好“智能投顾”源于它是现代金融经济发展的必然产物,更是Fintech创新的新阶段。通过以下几个方面来的解析不难发现,“智能投顾”在国内已经具备了开花结果的“土壤”。
大数据时代丰富“互联网金融”形态
当我们打开“外卖”APP,输入地址后,系统自动推荐附近的美食,订过几次餐后,APP就可以时不时的发送符合你“口味”的美食信息……谁都知道,这是大数据的智慧和力量。当今社会,大数据已经渗透到电子商务、O2O、物流配送等各个领域,金融市场也不例外。正如曾经我们对“互联网金融”概念的理解可能仅仅停留在“在线支付工具”、“P2P平台”等,虽然这些新型产物的形态有好有坏,但Ta们都是大数据时代的产物。同样,“智能投顾”的出现,也必将进一步丰富“互联网金融”的形态。
相比人工“理投”顾问服务,“智能投顾”更能彰显大数据的价值。不难看出,机器人理投顾问产品在基于客户自身的理财需求提供投资顾问服务时,正因为通过科学的数据计算,为客户搭建一个客观的投资数据模型,从而减少了人为投资顾问服务中出现的信任、情绪、利益冲突等问题,这对于任何投资者或机构而言都将是更加理想的服务模式,而且“智能投顾”服务成本低但效率极高,同时可“多资产”操作。就好像“附近的美食”一样,与其有人凭借个人感受给你推荐,当然不不上下载一款外卖APP。
“智能投顾”响应政策 推动市场前景明朗化
某种意义上,“智能投顾”的兴起离不开人工智能掀起的新一轮互联网变革浪潮。国家“十三五”战略规划中首次纳入人工智能,规划指出2018
年目标形成千亿级规模市场。而去年5月份开始,国家四部委更是颁布了《“互联网+"人工智能三年行动实施方案》,明确提出要培育发展人工智能新兴产业、推进重点领域智能产品创新、提升终端产品智能化水平。至此之后,无人驾驶、指纹识别等一系列创新科技被提出,人工智能离我们越来越近。“互联网金融”在人工智能的政策推动下有了“智能投顾”的成果,且市场前景更加明朗化。
数据统计显示,未来十年内“智能投顾”的市场总额将达到5万亿美元。咨询机构更是认为,未来五年“智能投顾”的市场复合增长率将达到68%,到2020年,“智能投顾”行业的资产管理规模将突破2.2万亿美元。可以说,在人工智能技术高速发展的带动下,“智能投顾”已经将“互联网金融”市场引领到一个新的阶段,成为投资个人或机构顺应时代潮流的选择。
国内主流“智能投顾”平台领跑Fintech创新
或许我们都没想到,自从2013年余额宝横空出世后,人们的理财意识开始“萌芽”,继而大批的互联网理财产品涌入市场。必须承认,任何一块“蓝海”,总要有主流“开拓者”带来信心。“智能投顾”市场更是如此,业内人士一致看好“智能投顾”的原因也基于目前国内已经出现了相对成熟的“智能投顾”机构来领跑Fintech创新。调查了解到,当下深受欢迎的“智能投顾”平台包括摩羯智投、富善投资、储财云智投、汇财国际、蓝海智投等。
不可避免,无论是投资人还是经纪公司,大家最为关心的还是“智能投顾”平台带来的效益。对比来看,主流平台各有优势,诸如招商银行的摩羯智投拥有大批存量客户,但收益率相对偏低;而富善投资已经在业内有了较高知名度,从而加入门槛也在升高;储财云智投的成长速度很快,创新性的技术革命也让其在2016年脱颖而出,稳定年化收益率达20%;

“理投”人群的接受度日益提高
任何行业涌现新兴分支市场“蓝海”时,最不容忽视的应该是消费群体。就当下“智能投顾”在国内“迈步”的阶段而言,受众集中在中产人群中。这样一来,“智能投顾”就无法回避一些人对其未来普及程度的质疑。但是我们要认识到,80、90后年轻人群作为互联网“原住民”正在走向“智能投顾”领域,Ta们日益成为社会消费群体的中坚力量,也是中产人群的活跃群体,这一点从购物平台、互联网理财产品的用户统计中已经得到确认。
国外比较典型的“智能投顾”平台Kensho现如今已经拥有庞大的用户群体,几乎在投资人群中得到普及。而国内“智能投顾”平台也值得期待,正如“储财云智投”提出要打造中国自己的“Kensho”提供全民参与成为“合伙人”的智投平台。以相关机构对“智能投顾”的目标受众来推算,中国年收入在6万-600万之间的有投资资产人群中,拥有95万亿可支配资产。所谓的中产阶级,已经超过了1亿人。而随着80、90后年轻人群加入到中产“大军”的步伐变快,“智能投顾”的接受度会日益提高。
小 结:
“智能投顾”离我们远吗?通过以上几个方面的分析与了解,我们不难看出机器理财已不再是梦想。或许“智能投顾”市场还将经历行业标准的塑造、技术创新、乃至产生完全符合国内金融行情的“智能投顾”模式等一系列挑战,不过我们有理由相信,在当前互联金融科技持续创新、国家政策正向引导的大背景下,故事的谱写正当其时,值得期待……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20