
相关研究表现,44%的大型企业(即拥有超过1000名员工的企业)认为其安全数据收集和分析是“大数据”应用,而另外44%认为其安全数据收集和分析将会在未来2年内成为“大数据”应用。此外,86%的企业正在收集比两年前“更多”或“略多”的安全数据。
这种增长趋势非常明显,大型企业正在收集、处理和保存越来越多的数据用于分析,他们使用来自IBM、Lancope、LogRhythm、 Raytheon、RSA Security和Splunk等供应商的工具和服务从数据中获取可操作情报用于风险管理和事故预防/检测/响应。
最近,笔者与安全专家以及供应商围绕大数据安全分析进行了很多探讨,这些讨论往往专注于分析应用程序方面。有时候这些讨论会围绕于安全分析基础设施,例如Hadoop、HDFS、Pig和Mahout,有时候则围绕UI、可视化分析、应用程序整合等。
每个人都对大数据安全分析应用程序感兴趣,但几乎没有人会问大数据安全分析所需要的IT基础设施基础。其结果是,很多企业会受到打击,他们甚至无法收集他们想要分析的安全数据。
收集和处理千兆或兆兆字节的安全数据需要对大数据安全分析管道进行一些规划和部署,包括如下:
·数据包捕捉设备。这些设备包括来自Cavium、Emulex和Solarflare等供应商的高性能智能NIC卡,磁盘驱动器,以及来自 Wireshark等供应商的PCAP软件,它们整合在一起作为数据包捕捉设备。这些设备需要足够快以捕捉和处理数据包,用于分析引擎的分类。PCAP硬 件设备将出现在整个网络的关键连接点,而虚拟PCAP设备能够支持服务器虚拟化和云计算平台。
·分析分布网络。数据包捕捉设备收集和处理数据,但数据仍然需要接近实时地在多个分析引擎移动。这正是分析分布网络的工作,这种系统包括来自 Anue、Apcon、BitTap、Gigamon、Netscout和Riverbed等供应商的设备。在某些情况下,分析分布网络将补充数据包捕捉 设备,在其他情况下,分析分布网络将提供轻量级PCAP功能。(请注意,用来描述这个的行业术语是“网络数据包代理设备”,但笔者认为这太以设备为中心, 所以换了名称。)
·SDN。SDN可编程控制平面很可能会成为穷人的分析分布网络,但SDN不会很快就抢占分配网络设备的地位。SDN将会成为分析基础设施的一部分,补充PCAP和分析分布网络功能。SDN和分析分布网络整合给网络数据捕捉和分析引擎带来了强大的连接性。
·分析中间件。在很多情况下,每个分析工具收集、处理和路由其自己的数据。虽然这是可行的,但这带来了很大的冗余性、资本成本和运营开销。这里 需要的是某种类型的基于标准的中间件,以进行消息队列或发布和订阅。例如,RSA Security公司使用开源RabiitMQ作为其分析引擎之间的中间件。
从架构的角度来看,企业可以采用分层的方法来部署大数据安全分析,其中分析引擎从管道中抽象出来,但可以很容易地用来定制化安全数据收集、处理 和分布。这能让首席信息官、首席信息安全官和网络工程师来调整期基础设施、流程和分析引擎,满足其具体的企业和行业要求,以及管理资本和运营成本。
本文转载于企业网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11