京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言数据集合并、数据增减、不等长合并
数据选取与简单操作:
一、数据合并
1、merge()函数
最常用merge()函数,但是这个函数使用时候这两种情况需要注意:
1、merge(a,b),纯粹地把两个数据集合在一起,没有沟通a、b数据集的by,这样出现的数据很多,相当于a*b条数据;
2、merge函数是匹配到a,b数据集的并,都有的才匹配出来,如果a、b数据集ID不同,要用all=T(下面有all用法的代码)。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#横向合并
ID<-c(1,2,3,4)
name<-c("Jim","Tony","Lisa","Tom")
score<-c(89,22,78,78)
student1<-data.frame(ID,name)
student2<-data.frame(ID,score)
total_student<-merge(student1,student2,by="ID") #或者rbind()
total_student
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#纵向合并
ID<-c(1,2,3)
name<-c("Jame","Kevin","Sunny")
student1<-data.frame(ID,name)
ID<-c(4,5,6)
name<-c("Sun","Frame","Eric")
student2<-data.frame(ID,name)
total<-cbind(student1,student2)
total
merge的all用法
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
> id=c("1","2","3")
> M=c("7","2","3")
> ink2=data.frame(id,M)
>
> merge(ink1,ink2,by="id",all=T) #所有数据列都放进来,空缺的补值为NA
id R M
1 1 9 7
2 2 7 2
3 4 9 <NA>
4 3 <NA> 3
> merge(ink1,ink2,by="id",all=F) #默认,只取两者的共有的部分
id R M
1 1 9 7
2 2 7 2
其中,all=T代表全连接,all.x=T代表左联结;all.y=T代表右连接
2、dplyr包
dplyr包的数据合并,
一般用left_join(x,y,by="name") 以x为主,y中匹配到的都放进来, 但,y中没有的则不放过来。
需要这个x数据集是全集,比较大。

3、paste函数
生成一长串字符向量。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
paste(c("X","Y"),1:10,sep="") #"X”,"Y"是长度为2的字符向量,1:10 长度为10的向量。命令是让这两个向量粘合在一起生成新的字符串向量,粘合后的新字符之间没有间隔。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#—————————paste中seq与collapse区别————————————————————
a = c(1, 2, 3, 4, 5)
names(a) = c('m', 'n','o', 'p', 'q')
# 主要是区分使用sep和collapse
b = paste(a, names(a), sep = "/") #不同向量合并在一起,但是还是各自向量
c = paste(b, collapse = ",") #不同向量合并在一起,但是变成一个向量
mode(b) #变量类型
mode(c)
4、cbind和rbind函数
cbind()和rbind(),cbind()按照纵向方向,或者说按列的方式将矩阵连接到一起。
rbind()按照横向的方向,或者说按行的方式将矩阵连接到一起
rbind/cbind对数据合并的要求比较严格:合并的变量名必须一致;数据等长;指标顺序必须一致。相比来说,其他一些方法要好一些,有dplyr,sqldf中的union
5、sqldf包
利用SQL语句来写,进行数据合并,适合数据库熟悉的人,可参考:
R语言︱ 数据库SQL-R连接与SQL语句执行(RODBC、sqldf包)
二、数据增减
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
x=x[,-1] #这个就代表,删除了x数据集中第一列数据
或用dplyr包中的mutate函数
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
a=mutate(Hdma_dat,dou=2*survived,dou4=4*survived)
Hdma_dat$dou=a$dou
Hdma_dat$dou4=a$dou4 #两个新序列,加入到Hdma数据集汇总
筛选变量服从某值的子集
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
subset(airquality, Temp > 80, select = c(Ozone, Temp))
subset(airquality, Day == 1, select = -Temp)
subset(airquality, select = Ozone:Wind)
三、数据纵横加总
R使用rowSums函数对行求和,使用colSums函数对列求和。
四、不等长合并
1、plyr包
rbind.fill函数可以很好将数据进行合并,并且补齐没有匹配到的缺失值为NA。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#————————————————————————————不等长合并
#如何解决合并时数据不等长问题——两种方法:do.call函数以及rbind.fill函数(plyr包)
#rbind.fill函数只能合并数据框格式
#do.call函数在数据框中执行函数(函数,数据列)
library("plyr") #加载获取rbind.fill函数
#第一种方法
list1<-list()
list1[[1]]=data.frame(t(data.frame(Job_Pwordseg.ct[1])))
list1[[2]]=data.frame(t(data.frame(Job_Pwordseg.ct[2])))
do.call(rbind.fill,list1)
#第二种方法
u=rbind.fill(data.frame(t(data.frame(Job_Pwordseg.ct[1]))),data.frame(t(data.frame(Job_Pwordseg.ct[2]))))
核心函数是plyr包中的rbind.fill函数(合并的数据,必须是data.frame),do.call可以用来批量执行。(do.call用法)
关于do.call其他用法(R语言 函数do.call()使用 )
有一个list,想把里面的所有元素相加求和。发现了两个很有意思的函数
list <- list(matrix(1:25, ncol = 5), matrix(4:28, ncol = 5), matrix(21:45, ncol=5))
list.sum<-do.call(sum,list)
list.sum<-do.call(cbind,list)
do.call() 是告诉list一个函数,然后list里的所有元素来执行这个函数。
2、dplyr包
dplyr::bind_rows()
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
mpg cyl hp drat wt qsec vs am gear carb disp
(dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl)
1 21.0 6 110 3.90 2.620 16.46 0 1 4 4 NA
2 21.0 6 110 3.90 2.875 17.02 0 1 4 4 NA
3 22.8 4 93 3.85 2.320 18.61 1 1 4 1 NA
4 21.4 6 110 3.08 3.215 19.44 1 0 3 1 NA
5 17.8 6 123 3.92 3.440 18.90 1 0 4 4 167.6
6 16.4 8 180 3.07 4.070 17.40 0 0 3 3 275.8
7 17.3 8 180 3.07 3.730 17.60 0 0 3 3 275.8
8 15.2 8 180 3.07 3.780 18.00 0 0 3 3 275.8
效果是,不匹配到的放在最后,且等于NA NA NA NA
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09