京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的隐私与货币化悖论
人生的乐趣在于不确定性。如果大数据作为一种技术,在未来统治了人们的工作和生活,那么我们每个人将都是赤身裸体的连皮肤可能都要是失去了!
我们将进入一个确定的、可预测的世界。这是我在昨天参加完百度BIG Talk第三期《大数据开启大未来》的科技对话活动之后,最为直接的想法。来自美国的彭特兰教授是这次对话的灵魂人物,此君名声在外,不只是因为他自己自身是MIT媒体实验室的负责人,在大数据领域属于一流的学者,他的学生也都是人中翘楚,其中就包括谷歌眼镜的发明人。
去之前,稍微做了点功课。因为我始终对大数据技术那种宣称的无所不能持有怀疑和谨慎的态度。因为我认为过度的技术浸入人类的生活和工作,并非完全利好。尤其可穿戴产品,人类的所思所想所行,都变得越来越透明。以至于很多商人在欢呼,传统的消费者行为学理论终于可以寿终正寝,在他们看来,作为消费者的我们不再是黑盒子。
“个人的数据资产不能交给商业公司”
因此,我比较关注彭特兰教授有关隐私方面的演讲。因为在大数据统治的数字化社会,我并不认为做一名数字透明化的顾客会是多么幸福的事情。
彭特兰教授在演讲中提到的一个观点,我认为值得整个社会深思,他说我们不应该把个人的数据交给一个以盈利为目的的商业公司。在彭特兰教授的观点中,他认为作为个人而言,在大数据时代,应该具有四种权力:
1)被通知权:能够明确的知晓自己的数据在何时、何地、以何种方式会被采集
2)知情同意权:个人明确的知道数据将会被如何利用,并且必须经由本人同意
3)审核:在这里主要是指政府法律机构负责审核
4)撤销权:个人随时可以销毁自己的个人数据资产。通俗的说,就是彭特兰教授称之为“数据上的新决议”三原则:你有权利拥有你的数据、你有权利掌握数据的使用、你有权利摧毁或者贡献你的数据。
所以在他的解决方案中,他提出了一个可信网络的概念,借用的是SWIFT(环球银行电信协会)在全球银行间建设的银行间通信和实时清算系统。同时,他还提出了一个“开放个人数据商店”的模型,在这个模型中,这是一个唯一的存储个人数据的地方,在面对外部访问请求的时候,给出的最终答案,而不是数据本身。
当然,运营和管理这样的一个个人数据商店,并非简单和容易的事情,尤其是在全世界范围内统一起来更是几无可能。在这里面既涉及到各国政府管理和服务本国公民的问题,也涉及到全球的国际公司巨头们的巨大商业利益问题。所以笔者对彭特兰教授的这个开放个人数据商店能否真正解决个人的数据隐私保护持有保留态度。
教授的理想是个人的数据资产不能交给商业公司。
如何合理的货币化自己的个人数据资产
但是冷酷的现实则是,除了商业公司对我们的个人数据资产抱有浓厚的兴趣之外,恐怕很难找到一个跳出五行外不在佛门中的人和机构,对此持有持续的兴趣和动力。(当然,政府机构也对此抱有极强的兴趣,但是那是另外一回事)
所以对于个人而言,更为现实的问题,则是如何合理的货币化自己的个人数据资产的问题。这一点,彭特兰教授在演讲中,也有提及。他指出,建立一种机制,鼓励人们分享和贡献数据,既能给自己,也能给他人和整个社会带来好处。
对此,我深表同意。比如如果每个司机人都愿意实时的分享自己驾驶车辆的速度、位置、刹车、加速的情况,这样整个城市的路网,都实现了动态的监控和运营,或许对于改善所有司机的出行效率都有好处。
但是重要的问题是,要有足够的经济激励,刺激个人在信任安全可靠的前提下,有意愿分享自己的数据。显然,有机构或者组织愿意直接出资购买个人的这些数据是一种最为直接的商业模式,但是在现实生活中,第三方付费的模式则更为普遍。
不过有次带来的新问题则是,如果人们知道自己的数据能够给自己带来收益,则可能会影响其有意识的偏离正常的行为模式,从而使得数据的真实性又产生新的问题。这一点,其实在目前互联网世界中,第三方付费的商业模式中,案例比比皆是,虚假繁荣的数据由利益而生。
不过,有激励的机制,显然整体绩效要高于没有激励的机制,这一点,我认为是大数据时代,如果向获得完整和真实的数据,所必须考虑的一点。
目前来了,大数据的出现还主要是为了提高生产力,提高营销的效果,改善我们的交通、环境、健康、城市的境况。但是随着生物科技、信息通信技术的发展,物联网、互联网的融合发展,我们的世界或许将不可避免的进入一个“全数据化”的世界——在这样的世界,任何不可数据化的东西,都将与不存在一样。
在这样的世界,将是由大数据统治的世界,每一个人都是一串二进制编码,透明而简单,一切都是确定的,都是可预测的,都是按部就班的,你喜欢吗?反正我不喜欢,没有不确定性的人生能有多大意思呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16