京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的隐私与货币化悖论
人生的乐趣在于不确定性。如果大数据作为一种技术,在未来统治了人们的工作和生活,那么我们每个人将都是赤身裸体的连皮肤可能都要是失去了!
我们将进入一个确定的、可预测的世界。这是我在昨天参加完百度BIG Talk第三期《大数据开启大未来》的科技对话活动之后,最为直接的想法。来自美国的彭特兰教授是这次对话的灵魂人物,此君名声在外,不只是因为他自己自身是MIT媒体实验室的负责人,在大数据领域属于一流的学者,他的学生也都是人中翘楚,其中就包括谷歌眼镜的发明人。
去之前,稍微做了点功课。因为我始终对大数据技术那种宣称的无所不能持有怀疑和谨慎的态度。因为我认为过度的技术浸入人类的生活和工作,并非完全利好。尤其可穿戴产品,人类的所思所想所行,都变得越来越透明。以至于很多商人在欢呼,传统的消费者行为学理论终于可以寿终正寝,在他们看来,作为消费者的我们不再是黑盒子。
“个人的数据资产不能交给商业公司”
因此,我比较关注彭特兰教授有关隐私方面的演讲。因为在大数据统治的数字化社会,我并不认为做一名数字透明化的顾客会是多么幸福的事情。
彭特兰教授在演讲中提到的一个观点,我认为值得整个社会深思,他说我们不应该把个人的数据交给一个以盈利为目的的商业公司。在彭特兰教授的观点中,他认为作为个人而言,在大数据时代,应该具有四种权力:
1)被通知权:能够明确的知晓自己的数据在何时、何地、以何种方式会被采集
2)知情同意权:个人明确的知道数据将会被如何利用,并且必须经由本人同意
3)审核:在这里主要是指政府法律机构负责审核
4)撤销权:个人随时可以销毁自己的个人数据资产。通俗的说,就是彭特兰教授称之为“数据上的新决议”三原则:你有权利拥有你的数据、你有权利掌握数据的使用、你有权利摧毁或者贡献你的数据。
所以在他的解决方案中,他提出了一个可信网络的概念,借用的是SWIFT(环球银行电信协会)在全球银行间建设的银行间通信和实时清算系统。同时,他还提出了一个“开放个人数据商店”的模型,在这个模型中,这是一个唯一的存储个人数据的地方,在面对外部访问请求的时候,给出的最终答案,而不是数据本身。
当然,运营和管理这样的一个个人数据商店,并非简单和容易的事情,尤其是在全世界范围内统一起来更是几无可能。在这里面既涉及到各国政府管理和服务本国公民的问题,也涉及到全球的国际公司巨头们的巨大商业利益问题。所以笔者对彭特兰教授的这个开放个人数据商店能否真正解决个人的数据隐私保护持有保留态度。
教授的理想是个人的数据资产不能交给商业公司。
如何合理的货币化自己的个人数据资产
但是冷酷的现实则是,除了商业公司对我们的个人数据资产抱有浓厚的兴趣之外,恐怕很难找到一个跳出五行外不在佛门中的人和机构,对此持有持续的兴趣和动力。(当然,政府机构也对此抱有极强的兴趣,但是那是另外一回事)
所以对于个人而言,更为现实的问题,则是如何合理的货币化自己的个人数据资产的问题。这一点,彭特兰教授在演讲中,也有提及。他指出,建立一种机制,鼓励人们分享和贡献数据,既能给自己,也能给他人和整个社会带来好处。
对此,我深表同意。比如如果每个司机人都愿意实时的分享自己驾驶车辆的速度、位置、刹车、加速的情况,这样整个城市的路网,都实现了动态的监控和运营,或许对于改善所有司机的出行效率都有好处。
但是重要的问题是,要有足够的经济激励,刺激个人在信任安全可靠的前提下,有意愿分享自己的数据。显然,有机构或者组织愿意直接出资购买个人的这些数据是一种最为直接的商业模式,但是在现实生活中,第三方付费的模式则更为普遍。
不过有次带来的新问题则是,如果人们知道自己的数据能够给自己带来收益,则可能会影响其有意识的偏离正常的行为模式,从而使得数据的真实性又产生新的问题。这一点,其实在目前互联网世界中,第三方付费的商业模式中,案例比比皆是,虚假繁荣的数据由利益而生。
不过,有激励的机制,显然整体绩效要高于没有激励的机制,这一点,我认为是大数据时代,如果向获得完整和真实的数据,所必须考虑的一点。
目前来了,大数据的出现还主要是为了提高生产力,提高营销的效果,改善我们的交通、环境、健康、城市的境况。但是随着生物科技、信息通信技术的发展,物联网、互联网的融合发展,我们的世界或许将不可避免的进入一个“全数据化”的世界——在这样的世界,任何不可数据化的东西,都将与不存在一样。
在这样的世界,将是由大数据统治的世界,每一个人都是一串二进制编码,透明而简单,一切都是确定的,都是可预测的,都是按部就班的,你喜欢吗?反正我不喜欢,没有不确定性的人生能有多大意思呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27