京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python当前进程信息 (os包)
我们在Linux的概念与体系,多次提及进程的重要性。Python的os包中有查询和修改进程信息的函数。学习Python的这些工具也有助于理解Linux体系。
进程信息
os包中相关函数如下:
uname() 返回操作系统相关信息。类似于Linux上的uname命令。
umask() 设置该进程创建文件时的权限mask。类似于Linux上的umask命令,见Linux文件管理背景知识
get*() 查询 (*由以下代替)
uid, euid, resuid, gid, egid, resgid :权限相关,其中resuid主要用来返回saved UID。相关介绍见Linux用户与“最小权限”原则
pid, pgid, ppid, sid :进程相关。相关介绍见Linux进程关系
put*() 设置 (*由以下代替)
euid, egid: 用于更改euid,egid。
uid, gid : 改变进程的uid, gid。只有super user才有权改变进程uid和gid (意味着要以$sudo python的方式运行Python)。
pgid, sid : 改变进程所在的进程组(process group)和会话(session)。
getenviron():获得进程的环境变量
setenviron():更改进程的环境变量
例1,进程的real UID和real GID
import os
print(os.getuid())
print(os.getgid())
将上面的程序保存为py_id.py文件,分别用$python py_id.py和$sudo python py_id.py看一下运行结果
saved UID和saved GID
我们希望saved UID和saved GID如我们在Linux用户与“最小权限”原则中描述的那样工作,但这很难。原因在于,当我们写一个Python脚本后,我们实际运行的是python这个解释器,而不是Python脚本文件。对比C,C语言直接运行由C语言编译成的执行文件。我们必须更改python解释器本身的权限来运用saved UID机制,然而这么做又是异常危险的。
比如说,我们的python执行文件为/usr/bin/python (你可以通过$which python获知)
我们先看一下
$ls -l /usr/bin/python
的结果:
-rwxr-xr-x root root
我们修改权限以设置set UID和set GID位 (参考Linux用户与“最小权限”原则)
$sudo chmod 6755 /usr/bin/python
/usr/bin/python的权限成为:
-rwsr-sr-x root root
随后,我们运行文件下面test.py文件,这个文件可以是由普通用户vamei所有:
import os
print(os.getresuid())
我们得到结果:
(1000, 0, 0)
上面分别是UID,EUID,saved UID。我们只用执行一个由普通用户拥有的python脚本,就可以得到super user的权限!所以,这样做是极度危险的,我们相当于交出了系统的保护系统。想像一下Python强大的功能,别人现在可以用这些强大的功能作为攻击你的武器了!使用下面命令来恢复到从前:
$sudo chmod 0755 /usr/bin/python
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22