京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在通过 Python requests 库的 response.text 获取 API 数据后,原始数据常存在缺失、格式混乱、重复等问题 —— 即便像科技新闻 API 返回的结构化 JSON 数据,也可能隐藏字段空值、时间格式不统一、来源名称错漏等隐患。若直接用于分析或应用开发,轻则导致统计偏差,重则引发程序报错。本文以科技新闻 API 的 response.text 数据为例,围绕数据清洗去噪的五大核心原则,详解实操流程与技术要点。
从 API 获取的 response.text 经 json.loads () 解析后,虽能转化为 Python 字典(如前文中的news_data),但原始数据可能存在以下问题:
字段缺失:某条新闻缺少content(内容)或publish_time(发布时间);
格式混乱:publish_time同时存在 “2025-08-20”“2025/08/20”“2025.08.20” 三种格式;
数据错误:source(来源)字段出现 “人工智学报”(应为 “人工智能学报”)等错别字;
重复冗余:存在两条完全相同的新闻条目;
无效值:content字段为空白字符串或 “暂无内容” 等无意义文本。
数据清洗去噪的本质,是通过 “检测问题 - 修复 / 剔除” 的流程,让数据符合完整性、一致性、准确性、唯一性、标准化五大原则,为后续的新闻趋势分析、来源统计、内容挖掘奠定可靠基础。
核心目标:确保每条数据的关键字段(如新闻的title“标题”、content“内容”、publish_time“发布时间”)无缺失、非空。
实操场景:解析后的news_data["news_list"]中,可能存在某条新闻缺失content字段,或publish_time为空值的情况。
Python 代码实现:
import requests
import json
from datetime import datetime
# 1. 获取并解析response.text(延续前文场景)
url = "https://api.technews.com/latest"
response = requests.get(url)
news_data = json.loads(response.text)
raw_news_list = news_data["news_list"]
# 2. 完整性检查与处理
cleaned_news = []
required_fields = ["title", "content", "publish_time", "source"] # 关键字段列表
for news in raw_news_list:
# 检查关键字段是否完整且非空
is_complete = all(
field in news and str(news[field]).strip() != "" 
for field in required_fields
)
if is_complete:
cleaned_news.append(news)
else:
# 记录缺失数据(便于后续排查API问题)
missing_fields = [f for f in required_fields if f not in news or str(news[f]).strip() == ""]
print(f"剔除不完整新闻(标题:{news.get('title', '未知')}),缺失字段:{missing_fields}")
print(f"完整性处理后:原始{len(raw_news_list)}条 → 清洗后{len(cleaned_news)}条")
处理逻辑:通过all()函数校验所有关键字段是否存在且非空,剔除缺失字段的无效数据,同时记录问题数据便于追溯 API 接口的数据源质量。
核心目标:确保同一字段的格式全局统一(如时间格式、单位、文本大小写),避免 “同值不同形” 导致的分析偏差。
实操场景:publish_time字段可能混合 “2025-08-20”“2025/08/20”“8/20/2025” 等格式,需统一为 “YYYY-MM-DD” 标准格式。
Python 代码实现:
def standardize_time(time_str):
"""统一时间格式为YYYY-MM-DD"""
time_formats = ["%Y-%m-%d", "%Y/%m/%d", "%m/%d/%Y"] # 常见待匹配格式
for fmt in time_formats:
try:
# 解析时间并按标准格式输出
return datetime.strptime(time_str.strip(), fmt).strftime("%Y-%m-%d")
except ValueError:
continue
# 若无法解析,标记为无效时间(后续处理)
return "无效时间"
# 对清洗后的新闻列表统一时间格式
for news in cleaned_news:
original_time = news["publish_time"]
standardized_time = standardize_time(original_time)
if standardized_time == "无效时间":
print(f"时间格式异常(标题:{news['title']}),原始时间:{original_time}")
cleaned_news.remove(news) # 剔除无法标准化的时间数据
else:
news["publish_time"] = standardized_time
# 验证一致性:查看所有时间格式
time_formats_after = {news["publish_time"] for news in cleaned_news}
print(f"时间格式统一后:{time_formats_after}(均为YYYY-MM-DD)")
处理逻辑:通过datetime库尝试匹配多种常见时间格式,将其统一为 “YYYY-MM-DD”,对无法解析的异常时间数据直接剔除,确保时间字段的一致性。
核心目标:排查并修正数据中的错别字、逻辑错误(如 “续航 - 100 公里”),确保数据反映真实情况。
实操场景:source字段可能出现 “人工智学报”(应为 “人工智能学报”)、“新能源日抱”(应为 “新能源日报”)等错别字;content中可能存在 “运算速度提升 0.5 万倍” 与标题 “提升百万倍” 的逻辑矛盾。
Python 代码实现:
# 1. 建立常见错误映射表(可根据实际场景扩展)
error_correction = {
"人工智学报": "人工智能学报",
"新能源日抱": "新能源日报",
"科技前沿周刑": "科技前沿周刊"
}
# 2. 修正来源名称错别字
for news in cleaned_news:
original_source = news["source"]
news["source"] = error_correction.get(original_source, original_source) # 无匹配则保留原值
# 3. 验证内容与标题的逻辑一致性(以量子计算机速度为例)
for news in cleaned_news:
title = news["title"]
content = news["content"]
# 若标题含“百万倍”,检查内容是否匹配
if "百万倍" in title and "百万倍" not in content:
print(f"逻辑矛盾预警(标题:{title}):标题提及'百万倍',内容未匹配")
# 输出修正后的来源列表
sources_after = {news["source"] for news in cleaned_news}
print(f"来源名称修正后:{sources_after}(无错别字)")
处理逻辑:通过 “错误映射表” 批量修正已知错别字,通过关键词匹配排查标题与内容的逻辑矛盾,对存疑数据进行预警,避免错误信息影响分析结论。
核心目标:删除完全重复或核心信息重复的条目(如同一新闻被多次抓取),确保数据唯一性。
实操场景:news_list中可能存在两条title、content、publish_time完全相同的新闻,或仅source不同但内容一致的重复条目。
Python 代码实现:
# 方法1:基于“标题+发布时间”去重(核心信息唯一)
unique_news = []
seen_keys = set() # 存储已出现的“标题+发布时间”组合
for news in cleaned_news:
# 生成唯一标识(标题+发布时间,避免同一新闻不同来源的误判)
unique_key = f"{news['title']}_{news['publish_time']}"
if unique_key not in seen_keys:
seen_keys.add(unique_key)
unique_news.append(news)
else:
print(f"移除重复新闻(标题:{news['title']},发布时间:{news['publish_time']})")
# 方法2:使用pandas库高效去重(适合大规模数据)
# import pandas as pd
# df = pd.DataFrame(cleaned_news)
# df_unique = df.drop_duplicates(subset=["title", "publish_time"], keep="first")
# unique_news = df_unique.to_dict("records")
print(f"去重后:清洗后{len(cleaned_news)}条 → 唯一数据{len(unique_news)}条")
处理逻辑:通过 “标题 + 发布时间” 的组合作为唯一标识(避免同一新闻不同来源的误判),手动去重或使用 pandas 高效去重,减少数据冗余对后续统计(如 “每日新闻数量”)的干扰。
核心目标:对文本内容、字段长度等进行标准化处理,确保数据符合后续应用(如数据库存储、文本挖掘)的要求。
实操场景:content字段可能包含特殊字符(如 “n”“t”)或过长文本;title字段可能存在首尾空格,需统一修剪。
Python 代码实现:
def standardize_text(text):
"""标准化文本:去除特殊字符、修剪空格、控制长度"""
# 1. 去除换行符、制表符等特殊字符
text = text.replace("n", "").replace("t", "").strip()
# 2. 控制文本长度(如content超过500字保留前500字+省略号,适配数据库字段限制)
if len(text) > 500:
text = text[:500] + "..."
return text
# 对标题和内容进行格式标准化
for news in unique_news:
news["title"] = news["title"].strip() # 修剪首尾空格
news["content"] = standardize_text(news["content"])
# 验证标准化结果
sample_news = unique_news[0]
print(f"标准化示例:n标题:{sample_news['title']}n内容:{sample_news['content']}")
处理逻辑:通过文本处理函数去除特殊字符、修剪空格,对过长文本进行截断,确保数据格式适配数据库字段长度限制或文本挖掘工具的输入要求。
经过五大原则的处理,原始response.text数据从 “可能存在问题的原始素材” 转化为 “干净、可靠的结构化数据”,具体成果如下:
| 处理环节 | 原始数据问题 | 清洗后效果 |
|---|---|---|
| 完整性处理 | 1 条缺失content的新闻 |
剔除无效数据,保留完整条目 |
| 一致性处理 | 时间格式混合 “-”“/” | 统一为 “YYYY-MM-DD” 格式 |
| 准确性处理 | “人工智学报” 等错别字 | 修正为正确来源名称 |
| 去重处理 | 2 条重复新闻 | 仅保留 1 条唯一数据 |
| 格式标准化 | content含n且过长 |
清除特殊字符,长度规范化 |
清洗后的数据集可直接用于后续应用:
统计分析:准确计算 “各来源新闻数量”“每日新闻发布频次”,如 “科技前沿周刊发布 1 条、新能源日报发布 1 条”;
可视化展示:利用统一格式的publish_time字段绘制 “科技新闻时间轴”,直观呈现技术突破节奏。
在 Python response.text 数据处理流程中,“获取 - 解析 - 清洗 - 应用” 四步环环相扣,而数据清洗去噪是承上启下的核心环节 —— 它既解决了原始 response.text 可能存在的 “脏数据” 问题,又为后续的分析与应用提供了可靠保障。
未来面对不同场景的 response.text 数据(如 HTML 文本、CSV 格式文本),只需围绕 “完整性、一致性、准确性、唯一性、标准化” 五大原则,灵活调整清洗策略(如 HTML 需先解析标签、CSV 需处理分隔符),即可高效释放数据价值,让 Python 网络数据获取与处理真正服务于实际需求。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31