京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接
https://edu.cda.cn/goods/show/3844?targetId=6753&preview=0
在日常工作中遇到简单的业务问题,可以直接查看数据进行验证并解决,但遇到复杂的问题时,可能看到数据都无从下手,拿到数据也看不出什么问题。本文将介绍一种常见又比较通用的数据分析方法-多维度拆解法,希望能够成为你进行数据分析和解决业务问题的利器。
多维度拆解是通过不同的维度去观察同一组数据,从而洞查数据异动背后的原因。
这种场景往往适用于像分栏目的播放量和新老用户比例等等。

一般适用于从不同渠道浏览到添加购物车到购买的这种全局的转化流程,

像有些跨区域的产品,不同的区域活动的效果自然不同,这时候我们就可以从不同省份的活动情况来进行分析。

比较适用于一些直播类的产品,比如需要去观察打赏主播的等级、性别,来自哪个频道进行多维度的拆解。

举个栗子:我们做少儿英语培训的产品,进行了一波推广营销活动后,想看下推广效果怎么样,如何查看呢?
首先我们从【进入网站事件】进行分析:
从用户性别进行拆分,由下图可以看出,进入网站的用户61%都是女性。相比孩子的父亲,母亲更关注少儿英语培训,这也跟大部分家庭由母亲带孩子有关。

从操作系统进行拆分,可以看出大部分用户来自iOS用户。据相关数据统计,女性用户更喜欢用苹果设备,这也与前面的性别分析是一致的。

按渠道来源进行拆分,由下图可以看出42%的用户来自于订阅号。这是因为我们在活动开始前做了一场公开课,并在订阅号上做了相关推送。

从城市等级这个维度进行拆分,咱们的产品定位是中等偏高收入的人群,这类用户主要集中在一线城市,这也符合我们产品目前的定位。

从进入网站这个事件按新老用户进行拆分,由下图可以发现,每天的DAU在过去的一周内没有发生什么波动,但是按新老用户拆分后发现,随着这一波的推广,咱们的新增用户数一直在涨的,但是DAU却没有啥变化,这是因为老用户一直在往下跌,这一涨一跌交集之后,DAU的趋势没有啥变化,这背后反映的情况是:引入了大量的新用户,但是没有成功的留住他们。

经过推广活动之后,注册-下单-支付的这个流程的转化情况如下图,那么从哪些方面提升转化率呢?我们就可以用多维度拆解的方法,对这个业务流程进行拆解。

首先从渠道来源进行拆解分析,由下图可以看出,百度来的流量虽然不少,但是下单和支付的转化率相比其他渠道还是挺低的。那像这种情况咱们可以加大其他渠道的广告投放力度,减少百度的投放力度。

其次从城市进行拆解分析,在郑州这座城市用户下单的意愿不强烈,这表明我们的产品可能不适合二级城市(新一级城市)的用户。

最后从操作系统拆解分析,由下图可以发现,iOS用户支付能力比较强,这也跟我们的产品大部分是女性用户有关。

基于以上拆解的案例可以看出,多维度拆解法的运作原理非常简单:指标或是业务流程按照多维度拆分,来观察数据的变动,从而找出问题的原因。
业务数据分析对数据分析工作至关重要,不懂业务就很难进行深入有效的数据拆解,所以CDA数据分析师一级把对比分析作为考点,
以上的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17