
以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点击下方链接
https://edu.cda.cn/goods/show/3842?targetId=6751&preview=0
帕累托分析(Pareto Analysis)源于经济学家维尔弗雷多·帕累托提出的"二八法则",其核心原理是通过识别导致80%结果的20%关键因素,帮助决策者聚焦资源解决主要矛盾。
具体实施步骤包含:
在管理和质量控制领域,帕累托分析(Pareto Analysis)是一种决策工具,用于识别少数重要因素对总体影响的程度。除此之外还可以有如下应用:
使用前需安装,代码运行的pyecharts版本是2.0.5
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts==2.0.5
首先,我们需要导入Pyecharts中的Bar和Line图表类,以及options类,用于实现对各个图标的配置,此外如果代码需要在jupyter notebook中展示图形还需要从globals中导入CurrentConfig, NotebookType做执行环境的配置,对于新版本的jupyter notebook统一设置为NotebookType.JUPYTER_LAB。
from pyecharts.charts import Bar, Line
from pyecharts import options as opts
# from pyecharts.globals import CurrentConfig, NotebookType
# CurrentConfig.NOTEBOOK_TYPE = NotebookType.JUPYTER_LAB
# 定义原始数据
categories = ["产品质量问题", "送货延迟", "客户服务不满", "价格不公", "其他"]
counts = [40, 30, 20, 5, 5]
技术细节说明:
total_counts = sum(counts) # 计算总量
cumulative_percents = [sum(counts[:i+1])/total_counts for i in range(len(counts))] # 累进计算
计算过程解析:
(1) 柱状图初始化
bar = (
Bar()
.add_xaxis(categories)
.add_yaxis("投诉次数", counts)
.set_global_opts(
title_opts=opts.TitleOpts(title="帕累托分析图"),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross")
)
)
bar.render_notebook()
关键技术点:
(2) 折线图构建
line = (
Line()
.add_xaxis(categories)
.add_yaxis(
"累计百分比",
cumulative_percents,
linestyle_opts=opts.LineStyleOpts(color="red", width=4),
label_opts=opts.LabelOpts(is_show=True, color="red")
)
)
line.render_notebook()
视觉优化设计:
帕累托图需将以上两张图组合在一起,可以使用overlap实现
bar.overlap(line) # 图层叠加
bar.render_notebook()
可以看到图形很奇怪,因为折线图对应的数据与柱形图对应的数据量纲相差很大。那如何优化?
bar = (
Bar()
.add_xaxis(categories)
.add_yaxis("投诉次数", counts, yaxis_index=0) # 设置使用哪个y轴左边的是第一个0 右边的是第二个1
# 优化点1 添加副y轴
.extend_axis(
yaxis=opts.AxisOpts(
type_="value",
name="累计百分比",
min_=0.3,
max_=1.1,
interval=0.2
)
)
.set_global_opts(
title_opts=opts.TitleOpts(title="帕累托分析图"),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross")
)
)
line = (
Line()
.add_xaxis(categories)
.add_yaxis(
"累计百分比",
cumulative_percents,
yaxis_index=1, # 设置使用哪个y轴左边的是第一个0 右边的是第二个1
linestyle_opts=opts.LineStyleOpts(color="red", width=4),
label_opts=opts.LabelOpts(is_show=True, color="red")
)
)
bar.overlap(line)
# 调整图层渲染顺序不然折线图被柱形图遮挡
bar.options["series"][1]["z"] = 1 # 折线图层
bar.options["series"][0]["z"] = 0 # 柱状图层
bar.render_notebook()
深度优化说明:
# bar.load_javascript() # 最新版jupyter notebook需要这样
bar.render_notebook() # Jupyter内嵌展示
# bar.render("pareto.html") # 生成独立HTML文件
多环境支持:
大家如果觉得自己的可视化技能训练的不错了,可以实操起来。
本实现方案通过Pyecharts高效构建了交互式帕累托分析图表,将技术实现与业务分析有机结合,为决策者提供直观的数据支持。开发者可根据具体业务需求扩展功能模块,构建完整的决策分析系统。绘制帕累托的流程相对固定,因此这些代码也可以封装为函数方便后续的复用。
# 完整实现代码
def get_plt(categories,counts):
import pandas as pd
df = pd.DataFrame({"categories":categories,"counts":counts})
categories = list(df.sort_values("counts")["categories"])
counts = list(df.sort_values("counts")["counts"])
from pyecharts.charts import Bar, Line
from pyecharts import options as opts
bar = (
Bar()
.add_xaxis(categories)
.add_yaxis("投诉次数", counts, yaxis_index=0) # 设置使用哪个y轴左边的是第一个0 右边的是第二个1
# 优化点1 添加副y轴
.extend_axis(
yaxis=opts.AxisOpts(
type_="value",
name="累计百分比",
min_=0.3,
max_=1.1,
interval=0.2
)
)
.set_global_opts(
title_opts=opts.TitleOpts(title="帕累托分析图"),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross")
)
)
line = (
Line()
.add_xaxis(categories)
.add_yaxis(
"累计百分比",
cumulative_percents,
yaxis_index=1, # 设置使用哪个y轴左边的是第一个0 右边的是第二个1
linestyle_opts=opts.LineStyleOpts(color="red", width=4),
label_opts=opts.LabelOpts(is_show=True, color="red")
)
)
bar.overlap(line)
# 调整图层渲染顺序不然折线图被柱形图遮挡
bar.options["series"][1]["z"] = 1 # 折线图层
bar.options["series"][0]["z"] = 0 # 柱状图层
return bar
以上的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点击下方链接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29