京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的角色。
优秀的公司,从来不缺HR的简历,但一直都缺优秀HR的简历。近年来,阿里、华为等大厂相继高薪放出了HR的岗位,不过招的不是传统事务性HR,而是人力数据分析师。
阿里人力资源部招聘HR:

华为招聘HR数据分析师:

大厂重金招聘HR数据分析师,给出的月薪也都不低,可见对HR数据分析人才的重视程度,这也从侧面反映出HR数据分析专业人才的稀缺性!
在这人工智能+数字化时代的加持下,世界正发生天翻地覆的改变。人力资源数据分析,不仅仅是对HR个人的要求,更是企业发展的需要。

人力资源数据分析的本质不仅是用数据说话、构建指标和设计仪表盘,而且还是基于业务和HR价值创造的纵向深度价值分析与横向业务驱动分析。
HR们也不再能依靠直觉来做决定了,数据才是向领导提供战略决策的最好证据。而这些明智的决策要依赖于一个关键方面:及时掌握数据分析能力的人力资源管理者。
因此,想进华为、阿里、腾讯这样的公司,HR需要满足同一个条件,那就是具备数据分析的技巧和能力。

在人力资源岗位上,因为本身不具备直接产生效益的能力,如果还不懂得运用人力资源数据推动业务发展的,那对企业而言,只能是成本部门,不被重视,没有任何话语权,还不如外包省钱省力。
正因为如此,很多企业,都已经开始设置人力资源数据分析师岗位。通过大数据获取有关组织和人才的信息,对企业在组织和人才上未来可能产生的问题进行预测、预警、预判,并据此向业务部门提出决策建议,让人力资源真正发挥价值。

如果大家对数据分析行业感兴趣的话,可以下方链接进去探索。
CDA数据分析师认证官网介绍:https://www.cdaglobal.com/pinggu.html
作为以数据分析为核心的HR,必须同时具备以下两个条件:
数据分析应用不仅仅停留在复盘上,更在于规划预测上。企业中CHRO或HR COE的定位便是依托数据的人才洞察与决策。
数据型HR的能力也体现在如何制定基于数据的人力资源规划,如何提升人才分析(People Analytics, PA)能力以及如何最大化人力资本效能上。

数据不是纸上或表格上的数字而已,而是要通过数据分析,找到问题或者规律,分析梳理出背后的关系;
找到原因,再提出解决方案,采取行动,最后反馈评估等,形成管理闭环。

要做好人力资源数据分析,首先要对人力资源数据进行深入了解。具体而言,人力资源数据可以分为三个主要类别:
人力资源信息系统(HRIS)数据:这类数据源自公司的人力资源信息系统,涵盖了绝大多数员工信息。常见的HRIS系统包括Workday、Oracle和SAP等。
其他人力资源数据:有些对数据驱动决策至关重要的HR数据,并不包含在HRIS中。这些数据通常通过调查或其他测量方法获得。
业务数据:虽然很难详尽列出所有相关的业务数据,但它们在人员分析中扮演着日益重要的角色。我们将讨论一些用于人员分析的基本业务数据类型。

HR用数据说话,从来不是一件简单的事情,也是HR工作里含金量高的工作之一。
只是能够做好数据分析的HR专业人才却寥寥无几,大多数HR还是“埋头苦干”的状态,并没有认识到自己手里的数据的价值。

人力资源系统中也会包含着一系列业务数据,如员工、供应商、合作伙伴、原材料、时间、地理位置、业务流程……类别多种多样。
这些数据表面看起来毫无关联,但背后往往隐藏着复杂的关系。如果我们能利用图分析技术,从关系的角度发现它们之间是如何关联、如何影响、如何依赖、如何作用的,我们就能挖掘出一些新的业务解决方案,产生一些全新的价值。
因此,对于HR而言,面对一堆杂乱无章的数据,通常可以考虑从3个角度来进行分析:

事实上,无论是在阿里还是华为,或是其他大厂,有非常多职位都需要数据分析技能。无论你是专职数据分析、还是从事具体的人力资源工作、或者是财务管理、销售运营、到客户服务... ... 这些职能都需要你掌握数据分析技能。
对于职场,尤其是HR而言,如何能获得更多的有关自身的数据,如何能在更多的纬度量化自己,如何能有效的利用这些数据,将成为人和人之间最大的区别所在。

在这个数据驱动的时代,数据分析已经成为了企业决策的核心。它不仅帮助我们从海量数据中提取有价值的信息,还能预测市场趋势,优化业务流程,几乎是每个职场人必修的课程。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程,CDA小程序资料非常丰富,包括题库、考纲等,利用好了自学就能考过。

CDA考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08