
随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的角色。
优秀的公司,从来不缺HR的简历,但一直都缺优秀HR的简历。近年来,阿里、华为等大厂相继高薪放出了HR的岗位,不过招的不是传统事务性HR,而是人力数据分析师。
阿里人力资源部招聘HR:
华为招聘HR数据分析师:
大厂重金招聘HR数据分析师,给出的月薪也都不低,可见对HR数据分析人才的重视程度,这也从侧面反映出HR数据分析专业人才的稀缺性!
在这人工智能+数字化时代的加持下,世界正发生天翻地覆的改变。人力资源数据分析,不仅仅是对HR个人的要求,更是企业发展的需要。
人力资源数据分析的本质不仅是用数据说话、构建指标和设计仪表盘,而且还是基于业务和HR价值创造的纵向深度价值分析与横向业务驱动分析。
HR们也不再能依靠直觉来做决定了,数据才是向领导提供战略决策的最好证据。而这些明智的决策要依赖于一个关键方面:及时掌握数据分析能力的人力资源管理者。
因此,想进华为、阿里、腾讯这样的公司,HR需要满足同一个条件,那就是具备数据分析的技巧和能力。
在人力资源岗位上,因为本身不具备直接产生效益的能力,如果还不懂得运用人力资源数据推动业务发展的,那对企业而言,只能是成本部门,不被重视,没有任何话语权,还不如外包省钱省力。
正因为如此,很多企业,都已经开始设置人力资源数据分析师岗位。通过大数据获取有关组织和人才的信息,对企业在组织和人才上未来可能产生的问题进行预测、预警、预判,并据此向业务部门提出决策建议,让人力资源真正发挥价值。
如果大家对数据分析行业感兴趣的话,可以下方链接进去探索。
CDA数据分析师认证官网介绍:https://www.cdaglobal.com/pinggu.html
作为以数据分析为核心的HR,必须同时具备以下两个条件:
数据分析应用不仅仅停留在复盘上,更在于规划预测上。企业中CHRO或HR COE的定位便是依托数据的人才洞察与决策。
数据型HR的能力也体现在如何制定基于数据的人力资源规划,如何提升人才分析(People Analytics, PA)能力以及如何最大化人力资本效能上。
数据不是纸上或表格上的数字而已,而是要通过数据分析,找到问题或者规律,分析梳理出背后的关系;
找到原因,再提出解决方案,采取行动,最后反馈评估等,形成管理闭环。
要做好人力资源数据分析,首先要对人力资源数据进行深入了解。具体而言,人力资源数据可以分为三个主要类别:
人力资源信息系统(HRIS)数据:这类数据源自公司的人力资源信息系统,涵盖了绝大多数员工信息。常见的HRIS系统包括Workday、Oracle和SAP等。
其他人力资源数据:有些对数据驱动决策至关重要的HR数据,并不包含在HRIS中。这些数据通常通过调查或其他测量方法获得。
业务数据:虽然很难详尽列出所有相关的业务数据,但它们在人员分析中扮演着日益重要的角色。我们将讨论一些用于人员分析的基本业务数据类型。
HR用数据说话,从来不是一件简单的事情,也是HR工作里含金量高的工作之一。
只是能够做好数据分析的HR专业人才却寥寥无几,大多数HR还是“埋头苦干”的状态,并没有认识到自己手里的数据的价值。
人力资源系统中也会包含着一系列业务数据,如员工、供应商、合作伙伴、原材料、时间、地理位置、业务流程……类别多种多样。
这些数据表面看起来毫无关联,但背后往往隐藏着复杂的关系。如果我们能利用图分析技术,从关系的角度发现它们之间是如何关联、如何影响、如何依赖、如何作用的,我们就能挖掘出一些新的业务解决方案,产生一些全新的价值。
因此,对于HR而言,面对一堆杂乱无章的数据,通常可以考虑从3个角度来进行分析:
事实上,无论是在阿里还是华为,或是其他大厂,有非常多职位都需要数据分析技能。无论你是专职数据分析、还是从事具体的人力资源工作、或者是财务管理、销售运营、到客户服务... ... 这些职能都需要你掌握数据分析技能。
对于职场,尤其是HR而言,如何能获得更多的有关自身的数据,如何能在更多的纬度量化自己,如何能有效的利用这些数据,将成为人和人之间最大的区别所在。
在这个数据驱动的时代,数据分析已经成为了企业决策的核心。它不仅帮助我们从海量数据中提取有价值的信息,还能预测市场趋势,优化业务流程,几乎是每个职场人必修的课程。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程,CDA小程序资料非常丰富,包括题库、考纲等,利用好了自学就能考过。
CDA考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09