
随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的角色。
优秀的公司,从来不缺HR的简历,但一直都缺优秀HR的简历。近年来,阿里、华为等大厂相继高薪放出了HR的岗位,不过招的不是传统事务性HR,而是人力数据分析师。
阿里人力资源部招聘HR:
华为招聘HR数据分析师:
大厂重金招聘HR数据分析师,给出的月薪也都不低,可见对HR数据分析人才的重视程度,这也从侧面反映出HR数据分析专业人才的稀缺性!
在这人工智能+数字化时代的加持下,世界正发生天翻地覆的改变。人力资源数据分析,不仅仅是对HR个人的要求,更是企业发展的需要。
人力资源数据分析的本质不仅是用数据说话、构建指标和设计仪表盘,而且还是基于业务和HR价值创造的纵向深度价值分析与横向业务驱动分析。
HR们也不再能依靠直觉来做决定了,数据才是向领导提供战略决策的最好证据。而这些明智的决策要依赖于一个关键方面:及时掌握数据分析能力的人力资源管理者。
因此,想进华为、阿里、腾讯这样的公司,HR需要满足同一个条件,那就是具备数据分析的技巧和能力。
在人力资源岗位上,因为本身不具备直接产生效益的能力,如果还不懂得运用人力资源数据推动业务发展的,那对企业而言,只能是成本部门,不被重视,没有任何话语权,还不如外包省钱省力。
正因为如此,很多企业,都已经开始设置人力资源数据分析师岗位。通过大数据获取有关组织和人才的信息,对企业在组织和人才上未来可能产生的问题进行预测、预警、预判,并据此向业务部门提出决策建议,让人力资源真正发挥价值。
如果大家对数据分析行业感兴趣的话,可以下方链接进去探索。
CDA数据分析师认证官网介绍:https://www.cdaglobal.com/pinggu.html
作为以数据分析为核心的HR,必须同时具备以下两个条件:
数据分析应用不仅仅停留在复盘上,更在于规划预测上。企业中CHRO或HR COE的定位便是依托数据的人才洞察与决策。
数据型HR的能力也体现在如何制定基于数据的人力资源规划,如何提升人才分析(People Analytics, PA)能力以及如何最大化人力资本效能上。
数据不是纸上或表格上的数字而已,而是要通过数据分析,找到问题或者规律,分析梳理出背后的关系;
找到原因,再提出解决方案,采取行动,最后反馈评估等,形成管理闭环。
要做好人力资源数据分析,首先要对人力资源数据进行深入了解。具体而言,人力资源数据可以分为三个主要类别:
人力资源信息系统(HRIS)数据:这类数据源自公司的人力资源信息系统,涵盖了绝大多数员工信息。常见的HRIS系统包括Workday、Oracle和SAP等。
其他人力资源数据:有些对数据驱动决策至关重要的HR数据,并不包含在HRIS中。这些数据通常通过调查或其他测量方法获得。
业务数据:虽然很难详尽列出所有相关的业务数据,但它们在人员分析中扮演着日益重要的角色。我们将讨论一些用于人员分析的基本业务数据类型。
HR用数据说话,从来不是一件简单的事情,也是HR工作里含金量高的工作之一。
只是能够做好数据分析的HR专业人才却寥寥无几,大多数HR还是“埋头苦干”的状态,并没有认识到自己手里的数据的价值。
人力资源系统中也会包含着一系列业务数据,如员工、供应商、合作伙伴、原材料、时间、地理位置、业务流程……类别多种多样。
这些数据表面看起来毫无关联,但背后往往隐藏着复杂的关系。如果我们能利用图分析技术,从关系的角度发现它们之间是如何关联、如何影响、如何依赖、如何作用的,我们就能挖掘出一些新的业务解决方案,产生一些全新的价值。
因此,对于HR而言,面对一堆杂乱无章的数据,通常可以考虑从3个角度来进行分析:
事实上,无论是在阿里还是华为,或是其他大厂,有非常多职位都需要数据分析技能。无论你是专职数据分析、还是从事具体的人力资源工作、或者是财务管理、销售运营、到客户服务... ... 这些职能都需要你掌握数据分析技能。
对于职场,尤其是HR而言,如何能获得更多的有关自身的数据,如何能在更多的纬度量化自己,如何能有效的利用这些数据,将成为人和人之间最大的区别所在。
在这个数据驱动的时代,数据分析已经成为了企业决策的核心。它不仅帮助我们从海量数据中提取有价值的信息,还能预测市场趋势,优化业务流程,几乎是每个职场人必修的课程。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程,CDA小程序资料非常丰富,包括题库、考纲等,利用好了自学就能考过。
CDA考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18