京公网安备 11010802034615号
经营许可证编号:京B2-20210330
制作漂亮的数据分析图表不仅需要一定的数据分析技巧,还需要了解如何直观、易于理解地呈现数据。选择合适的图表类型、讲究色彩搭配、优化图表布局、保持数据的准确性,这样才能大大提升图表的美观性和实用性。让我们深入探讨如何通过这些步骤实现这一目标。
无数次,我看到过复杂的数据被简单的图表表现得淋漓尽致,仿佛解开了信息背后的密码。选择正确的图表类型是展现数据故事的首要步骤。
折线图:这就像为你的数据画出一条时间变迁的“生命线”。适用于展示数据随时间变化的趋势,让人一目了然地看到增长或下降。
饼图:想让观众明白各部分的比例,饼图就是一个绝佳工具。但要注意,只在分类不多的时候使用,否则容易让人晕头转向。
然而,选择合适的图表只是第一步,颜色的使用同样重要。
选择一种清晰且对比度明显的配色方案,能让图表更加美观。如若颜色选得不当,读者可能会被五光十色所分散注意力,而无法专注于数据本身。
我记得某次在会议上看到一个深色背景的柱状图,结果由于颜色过于艳丽,反而看不清数据之间的差异。因此,避免使用过多鲜艳的颜色,渐变色则可以增加层次感,使数据展示更立体。
Excel不仅是一款强大的数据处理工具,其图表功能也十分出色,可以帮助我们制作双层数据分析图。以下是一些具体技巧:
通过添加辅助列将同比和环比增长率扩大,这样可以在最终图表中突出显示增长情况。插入柱形图后,继续添加数据,设置环比增长率,并调整坐标轴范围,以便更好地结合柱形图和折线图,形成双层效果。
将同比和环比添加到次标轴上,增长率用折线图表示。通过调整坐标轴范围,我们可以更清楚地展示数据增长趋势。
美化图表中的细节,通过调整标签位置和视觉效果,使其符合视觉美学,创建一个既吸引人又实用的图表。
“棒棒糖”图像是一种有趣的数据展现形式,能展示实际数据与计划数据之间的对比。
首先,使用IF函数判断数据是否大于1,将本月数分为已完成和未完成的两部分。这样可以清晰地反映实际与计划之间的差异。
确保计划柱的宽度和颜色与未完成部分区分开来,再添加数据标签,使其清晰易懂。在这里,点的标记变大,折线隐藏,使得图表更简洁和美观。
图表的终极目标是传达信息,而不是复杂的艺术品。因此,避免过多元素和装饰保持图表的简洁性尤为重要,让观众能够迅速理解其中的关键信息。
正确的比例和缩放可以正确传达数据的信息,而不至于误导观众。因此,确保图表的坐标轴和刻度清晰标示。添加明确的标题和标签更能提升图表的解释性。
条件格式化是Excel的一个强大功能,可以增强图表的可读性,使得数据更加突出。通过这项功能,你可以突出显示特定数据点、趋势和异常值,从而更快地帮助观众理解数据。
首先,选择数据范围,设置条件格式,比如字体颜色、填充颜色或图标集,以便轻松突出显示符合条件的数据。创建自定义规则来满足特定的分析需求,比如超出某个范围的值以不同颜色显示。
通过这些方法,可以大大提高数据分析的效率和效果。
颜色的合理使用在数据传递中有巨大作用。
使用互补色或相似色能够建立视觉上的对比和和谐,例如蓝橙搭配在柱状图中能有效区分不同数据类别,确保高对比度以便于观众区分数据点。
渐变色在图表中带来深度感,尤其在热力图中能表现数据的高低。通过高对比度颜色突出重要数据点或趋势线,其他数据线则用柔和的颜色。
使用色盲朋友也能理解的配色方案,如蓝色和橙色组合,避免红绿对比。沿用一致的颜色方案在整篇报告中更有助于观众的理解。
除Excel外,还有许多在线工具也可以帮助你制作专业的数据分析图表:
这些工具各有特点,根据需求和技术背景选择最适合的工具来制作图表。
制作出色的数据分析图表并没有想象中那么复杂,选择合适的图表类型,合理使用颜色和工具,如Excel,遵循设计原则,不仅能帮助你更好地呈现数据,还能增强图表的视觉吸引力。这样的图表不仅是数据的容器,更是一个生动的故事讲述者。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05