京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据仓库设计中,事实表和维度表是构建多维数据模型的两个核心组件。它们通过星型模式或雪花模式相互关联,以支持复杂的数据分析和查询。
事实表是数据仓库中的核心结构,用于存储业务过程中的度量值。其主要特点包括:
度量值:事实表中包含可加性、半可加性和不可加性的度量值。可加性度量值可以按任何维度汇总,而不可加性度量值只能计数或列出。
维度表用于描述事实表中的业务属性,并提供分析角度。其主要特点包括:
星型模式是最常见的多维数据模型结构,以一个中心的事实表为核心,周围连接多个维度表。这种结构简单直观,查询性能高,易于理解和实现。
雪花模式则是在星型模式的基础上进一步规范化维度表,将一些维度表拆分为多个相关的子表。虽然这减少了数据冗余并节省了存储空间,但查询复杂性增加,性能可能略低于星型模式。
在零售业中,一个典型的星型模型可能包括以下组件:
通过这种结构,可以有效地处理和分析大量数据,创建复杂的报表和分析。
提高数据仓库的查询性能、灵活性和可扩展性。下面是一些维度表和事实表设计的最佳实践:
规范化与反规范化:根据查询频率和性能需求,权衡规范化和反规范化。规范化可以减少数据冗余,但可能导致多表连接的复杂查询。反规范化可以提高查询性能,但会增加数据冗余。
处理层次结构:对于包含层次结构的维度(如时间维度),需要适当设计表结构以支持不同层次的聚合和分析。
维度标识:为每个维度表定义一个主键,并确保该主键在整个数据模型中唯一。
选择合适的粒度:根据业务需求确定事实表的粒度,确保能够满足各种数据分析需求。
选择合适的度量值:根据度量值的性质选择合适的类型,例如可加性、半可加性或不可加性度量。
多种类型的事实表:根据具体的业务场景,选择合适的事实表类型,如事务事实表用于记录单个事件的细节,快照事实表用于记录某一时刻的状态等。
通过遵循这些最佳实践,可以有效地设计和应用事实表和维度表,构建出高效、可靠的多维数据模型,提供有力支持给数据分析和业务决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24