京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前景非常好!世界经济论坛《2023年未来就业报告》显示,未来5年内增长最快的十大岗位包括了数据分析师和科学家、数字化转型专业人员。

数据分析分两种:第一种技术流,即数据工程师,算法工程师等等,重点是算法能力和编程能力,核心要打磨自己的编程基础,熟悉主流算法。第二种业务流,即数据分析师,商业分析师等等,熟练使用常用分析软件即可,懂分析方法论,有行业认知,门槛较低,上升空间较大,重点是具备解决实际的商业问题的能力。
数据分析师上升空间很大,如果想躺平,那数据分析师不是特别合适,数据分析岗位具备以下特点,请谨慎考虑要不要做。
1.辅助型岗位
数据分析师们经常会收到“我这里有一份数据,你帮我分析分析呗”这类没有明确需求的任务,往往经过在我们一顿自认为是金牌讲师的操作之后,得到的反馈却是一个又一个的灵魂拷问:
· 这些我早知道了,你分析了些啥?
· 环比下降了3%,那所以呢,能不能给点有价值的结论?
· 你分析了一轮,我还是不知道下一步要怎么做?
其中的本质原因,就是很多数据分析师只站在统计学的角度去分析,迷恋数值的游戏,而不是从业务的角色出发,通过数据解决业务问题。
2.需要有解决问题的能力
数据分析是一门从数据中发现问题解决问题的技术,它是以结果为导向,核心在于解决问题,所以极度考验个人数据分析思维的能力。从事这个岗位人,做得好的可以直接影响决策,指导公司业务;做得一般的人能够搭建业务的指标体系,定期写报告,辅助业务运行;最底层的大概就沦为取数机了。大部分人现在只能做到一般。
比如,老板给了你公司App的一周日活跃率,交给你以下任务:
(1)从数据中你看到了什么问题?你觉得背后的原因是什么?
(2)提出一个有效的运营改进计划。
你可能有这样的感觉:
这些症状是大部分数据分析相关从业人员的真实日常写照。
只要你掌握常用的分析方法,数据分析思路自然就有了。根据业务场景中分析目的的不同,可以选择对应的分析方法。

3.跨行难度比较高
需要数据分析师的行业很多,尤其现在各行各业都在做数字化转型,比如电商、互联网等,但不同行业的数据分析业务逻辑上并不相通,比如你之前做的电商的数据分析,那你接下来想转行做金融数据分析难度就非常大,想要做其他行业的数据分析就要从零开始。
最后,虽然有那么多问题,但数据分析还是一门值得从事的岗位。
一个数据分析师要想长久的干下去,建议做到以下三点:
第一,必须要扎根于业务,我们的工作从业务中来也会回到业务中去,核心在业务;
第二,必须要掌握核心技术,“业务是核心竞争力,技术是第一生产力”,这里的核心技术既包括了SQL,Excel,Python,Bi软件等各种工具的掌握,也要掌握各类统计学算法,要懂原理、优缺点,知道在什么情况下用什么算法。
第三,要不断地思考,从业务的角度理解数据,从数据中挖掘规律,用规律去指导业务,这是个完整的闭环。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28