京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前景非常好!世界经济论坛《2023年未来就业报告》显示,未来5年内增长最快的十大岗位包括了数据分析师和科学家、数字化转型专业人员。

数据分析分两种:第一种技术流,即数据工程师,算法工程师等等,重点是算法能力和编程能力,核心要打磨自己的编程基础,熟悉主流算法。第二种业务流,即数据分析师,商业分析师等等,熟练使用常用分析软件即可,懂分析方法论,有行业认知,门槛较低,上升空间较大,重点是具备解决实际的商业问题的能力。
数据分析师上升空间很大,如果想躺平,那数据分析师不是特别合适,数据分析岗位具备以下特点,请谨慎考虑要不要做。
1.辅助型岗位
数据分析师们经常会收到“我这里有一份数据,你帮我分析分析呗”这类没有明确需求的任务,往往经过在我们一顿自认为是金牌讲师的操作之后,得到的反馈却是一个又一个的灵魂拷问:
· 这些我早知道了,你分析了些啥?
· 环比下降了3%,那所以呢,能不能给点有价值的结论?
· 你分析了一轮,我还是不知道下一步要怎么做?
其中的本质原因,就是很多数据分析师只站在统计学的角度去分析,迷恋数值的游戏,而不是从业务的角色出发,通过数据解决业务问题。
2.需要有解决问题的能力
数据分析是一门从数据中发现问题解决问题的技术,它是以结果为导向,核心在于解决问题,所以极度考验个人数据分析思维的能力。从事这个岗位人,做得好的可以直接影响决策,指导公司业务;做得一般的人能够搭建业务的指标体系,定期写报告,辅助业务运行;最底层的大概就沦为取数机了。大部分人现在只能做到一般。
比如,老板给了你公司App的一周日活跃率,交给你以下任务:
(1)从数据中你看到了什么问题?你觉得背后的原因是什么?
(2)提出一个有效的运营改进计划。
你可能有这样的感觉:
这些症状是大部分数据分析相关从业人员的真实日常写照。
只要你掌握常用的分析方法,数据分析思路自然就有了。根据业务场景中分析目的的不同,可以选择对应的分析方法。

3.跨行难度比较高
需要数据分析师的行业很多,尤其现在各行各业都在做数字化转型,比如电商、互联网等,但不同行业的数据分析业务逻辑上并不相通,比如你之前做的电商的数据分析,那你接下来想转行做金融数据分析难度就非常大,想要做其他行业的数据分析就要从零开始。
最后,虽然有那么多问题,但数据分析还是一门值得从事的岗位。
一个数据分析师要想长久的干下去,建议做到以下三点:
第一,必须要扎根于业务,我们的工作从业务中来也会回到业务中去,核心在业务;
第二,必须要掌握核心技术,“业务是核心竞争力,技术是第一生产力”,这里的核心技术既包括了SQL,Excel,Python,Bi软件等各种工具的掌握,也要掌握各类统计学算法,要懂原理、优缺点,知道在什么情况下用什么算法。
第三,要不断地思考,从业务的角度理解数据,从数据中挖掘规律,用规律去指导业务,这是个完整的闭环。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27