在当今的数据挖掘领域,深度学习技术已经成为了推动科技进步的关键力量。其中,卷积神经网络(CNN)和循环神经网络(RNN)作为两种核心的深度学习模型,在图像 ... ...
2024-08-09在快速发展的数字化时代,数据成为企业竞争力的关键。为了有效管理和利用这些数据,企业通常会依赖两种核心技术:业务数据库和数据仓库。虽然这两者在功能上 ... ...
2024-03-28
数据现在可是非常宝贵的资源呢!数据分析作为一种用处广泛的重要技能,各行各业都用得上。那你知道都有哪些实战项目吗?本文给您介绍六个常见的案例: 项目1:市场调研分析 市场调研分析,就是为了了解市 ...
2024-08-09
前景非常好!世界经济论坛《2023年未来就业报告》显示,未来5年内增长最快的十大岗位包括了数据分析师和科学家、数字化转型专业人员。 数据分析分两种:第一种技术流,即数据工程师,算法工程师等等,重点是 ...
2024-08-09在企业数据仓库的设计中,多维数据模型是实现高效数据分析和报告的关键。这种模型通过模拟决策支持场景中的数据组织方式,让用户能够容易地理解数据,从而支持复杂的查询和数据挖掘工作。其中,星型模型 ...
2024-03-28企业内部科技公司的挑战与机遇(一) 以下文章来源于湘江数评 ,作者老杨 当前在高度不确定的市场环境下企业数字化转型已进入一个两极分化的阶段,一方面头部企业由于数字化建设介入早、认知早、所体现的成果也早 ...
2023-11-15数据仓库是一个用于存储、管理和分析企业数据的关键组件。它为企业提供了一个集成的视图,将来自各个业务系统的数据整合在一起,以支持业务决策和数据驱动的分析。然而,在进行数据仓库设计时,需要考虑一系列关键 ...
2023-10-20实时数据分析是一项重要的任务,可以帮助组织快速获取和分析实时数据,以支持决策制定和业务优化。SQL(Structured Query Language)是一种用于管理数据库的标准语言,可以有效地实现实时数据分析。在本文中,我们 ...
2023-10-11在当今数据驱动的时代,大规模数据集的分析对于企业和组织来说至关重要。SQL(Structured Query Language)是一种广泛应用于数据库管理系统的查询语言,也是处理和分析大规模数据集的重要工具之一。本文将介绍如何 ...
2023-10-11商业智能(Business Intelligence)报表是帮助企业管理层做出决策的重要工具。通过使用SQL(Structured Query Language),我们可以从数据库中提取、转换和汇总数据,以创建有用的商业智能报表。本文将介绍如何使 ...
2023-10-11数据可视化是一种强大的工具,可以将复杂的数据转化为易于理解和吸引人的图形形式。对初学者来说,选择适合自己的数据可视化工具可能有些困惑。在本文中,我将介绍几个适合初学者使用的常见数据可视化工具。 ...
2023-10-11在当今竞争激烈的市场中,准确地预测销售量对企业的成功至关重要。传统的销售预测方法往往基于经验和直觉,但随着数据科学和机器学习的发展,我们可以利用先进的算法和大数据来提高预测的精度。本文将介绍如何使用 ...
2023-10-11选择适合自己的机器学习算法是一个关键的步骤,它直接影响到模型的性能和应用效果。在选择算法时,需要考虑多个因素,包括问题类型、数据特征、模型复杂度以及可用资源等。下面是一些建议,帮助你选择适合自己的机 ...
2023-10-11随着大数据时代的到来,数据分析成为了各行各业中不可或缺的重要工作。对于想要入门数据分析领域的人来说,掌握基本的数据分析技能和方法是至关重要的。本文将介绍一些关键步骤和方法,帮助初学者在入门阶段提升数 ...
2023-10-11在当今信息时代,数据扮演着至关重要的角色。然而,由于各种原因,我们常常面临着数据不准确或缺失的情况。当数据不可靠时,它可能会导致错误的分析结果和错误的决策,进而对个人、企业乃至整个社会造成负面影响。 ...
2023-10-11数据仓库是指用于集成和存储大量结构化和非结构化数据的中央存储系统。它为组织提供了一个一体化的数据视图,使其能够进行全面的数据分析和决策支持。建立和维护数据仓库需要以下步骤: 需求分析:在建 ...
2023-10-11市场分析是企业决策和业务发展的关键环节,而统计方法在市场分析中扮演着重要的角色。通过统计方法,我们可以收集、整理和分析大量的市场数据,从而获得有关市场趋势、消费者行为和竞争情况等方面的见解。下面 ...
2023-10-11在当今信息爆炸的时代,数据分析已成为企业和组织决策过程中至关重要的一环。无论是市场调研、运营优化还是战略规划,数据分析都能够提供有力的支持和指导。然而,对于初学者来说,数据分析是否需要具备编程技能呢 ...
2023-10-11在数据清洗过程中,人们经常会遇到一些常见问题。下面是其中一些常见的问题: 数据缺失: 数据集中可能存在缺失值,即某些观察结果或属性的值未被记录。这可能是由于技术故障、人为错误或用户不完整填写表 ...
2023-10-11在当今商业环境中,数据已成为推动企业发展和决策的关键因素之一。对于提高商品销售量而言,充分利用数据分析和洞察力可以帮助企业深入了解消费者需求,优化产品定位和促销策略。 第一:数据收集和分析 ...
2023-10-11在当今数字化时代,网店数据分析已经成为电子商务运营中不可或缺的一环。然而,在进行网店数据分析过程中,存在一些常见的误区,这些误区可能导致决策失误和资源浪费。本文将探讨网店数据分析中常见的误区,并提供 ...
2023-10-11外贸数据的可视化分析方法有多种,以下是其中几种常用的方法: 折线图:折线图是最基本、最常见的数据可视化方法之一。通过将时间或其他指标作为横轴,将外贸数据(如出口额、进口额)作为纵轴,可以清 ...
2023-10-11B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22