京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据分析和统计学中,了解变量之间的相关性是一项重要任务。相关性分析可以帮助我们理解不同变量之间的关系,并揭示可能存在的模式和趋势。本文将介绍如何分析两个或多个变量之间的相关性,并讨论一些常用的分析方法和应用。
第一部分:相关性概述
相关性的定义:相关性衡量了两个或多个变量之间的关联程度。如果两个变量具有强相关性,它们的值往往会同时增加或减少;如果它们之间没有相关性,它们的值则相互独立。
相关性的类型:
第二部分:相关性分析方法
散点图:散点图是最简单直观的可视化工具,用于展示两个变量之间的相关性。通过观察散点图中点的分布,我们可以初步判断其相关性类型。
相关系数:相关系数是一种衡量两个变量之间相关性强弱的统计指标。常见的相关系数包括皮尔逊相关系数、斯皮尔曼等级相关系数和判定系数。这些系数的取值范围在-1到1之间,接近-1或1表示相关性较强,接近0表示相关性较弱或无相关性。
回归分析:回归分析用于建立一个或多个自变量与因变量之间的关系模型。通过回归分析,我们可以了解变量之间的函数关系,并进行预测和推断。
第三部分:相关性分析应用
市场研究:在市场研究中,相关性分析可以帮助确定不同市场因素对销售额的影响程度。例如,我们可以通过相关性分析来探索广告投资和销售额之间的关系。
金融分析:在金融领域,相关性分析可以帮助揭示不同证券之间的相关性。投资组合管理者可以利用相关性分析来构建风险分散的投资组合。
医学研究:在医学研究中,相关性分析有助于揭示不同变量(如生活方式、遗传因素等)与疾病发生的关联。这有助于了解疾病的风险因素和寻找潜在的干预措施。
相关性分析是一项重要的数据分析工具,可以帮助我们理解变量之间的关系并做出相应的推断。通过散点图、相关系数和回归分析等方法,我们可以定量地衡量变量之间的相关程度,并将其应用于各个领域的研究与实践中。深入理解相关性分析的原理和应用,对于数据科学家和决策者来说都是至关重要的技能。
相关性分析背后的统计学原理很有趣吧?想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28