京公网安备 11010802034615号
经营许可证编号:京B2-20210330
l 采访老师:欢迎大家来到CDA持证人专访,今天我们邀请到了赵森妙,目前在药企行业担任数据分析师,可以和大家打个招呼!
l 嘉宾:大家好!我叫赵森妙!我之前一名药企的VP助理,外企和内资的药企都是有经历过,因为接触过较多的数据分析,确定是我自己感兴趣的发展方向,目前的话刚转行到数据分析行业半年的时间,目前主要的工作是针对销售数据进行多维度的数据分析,针对不同层级,不同维度做可视化分析报告,给到业务人员指导方向;
l 采访老师:在药企行业做数据数据分析师是一种什么体验呢?可以举一些详细的业务例子吗? (一些工作内容,可以以一个业务展开,让大家了解你的工作)
l 嘉宾: 作为药企数据分析师,首先跟大部分的行业是一样的,我们需要花费大量的时间和精力来收集和整理数据,进行数据清洗和转换,提供可视化分析报告,撰写分析报告和提供解决建议;
l 采访老师:从事您这份工作,哪些技能是必备的?(从哪里获取数据源、哪些工作分别常用哪些工具等)
l 嘉宾:除了通用的统计分析技能之外,对医疗行业、医疗行业的销售技巧、流程、业务节点等都是需要了解的;比如说医药行业中药店和医院的关系,处方药在药店和医院查流向的区别;同时对于医院来说,进药和没有进药对于销量的影响,对于存量的核实;如果不了解,很多时候对于销量的数据可能有时候会存在失误的判断;
l 采访老师:针对销售数据,你主要是从哪些维度进行分析的呢?
嘉宾:现有的销售数据的话,主要从月、季度、年份的时间分类汇总,同时做好同比、环比分析,排名状况分析,了解实际所处的位置和变化情况; 另外就是按省份、地级市、医院、人员等角度做好增长分析和排名分析,了解横向的变化及所处的位置;另外很重要的一点是根据计划完成情况进行对比,做好优秀典型的分析及未完成原因分析;
l 采访老师:说到给业务人员指导方向,哪些方法是你比较看重的呢?(原因分析、未来预测、现状分析等等可以展开讲讲~)
l 嘉宾:作为数据分析师,在与业务沟通的时候,我也做不到对各项数据信手拈来,但是我一般会事先准备好几方面的数据;有一个比较好的方法,举个例子:我可能会参考矩阵图的分类方式,从自身增长及市场增长两个方面来看,哪些省份和地级市是比较典型需要拿出来说的,比如说市场占有率很高,但自身还是负增长的,是明显存在问题的;另外再结合在全国的排名及其他维度的各项数据分析各个地方的优势和存在的问题,这个优势点是否能够带来增长,且是否可以给其他的地方作为借鉴;如果确实是通用可以借鉴的,那么在别的会议上我也会去推广建议;同时利用这个优势点在现有地方已经能够带来的量,我们大致预测其他地方未来的增长量,都可以结合起来看;接下来的这个地方工作重点是否这个,如果是,那么目标也好定了,目标值也定好了;大概是这样,树立标杆及推广共性的优秀方法是我也比较看重的一个点;
l 采访老师:您为什么想要转行到数据分析师呢?是什么机遇下让您转行成功呢?
结束语
其实前面有好几年我都在做商务支持,助理类的相关工作,但这个工作有一部分其实有很多工作是与数据分析部门打交道的,比如在做指标合理性分析、辖区调整、汇报ppt等,我都会参与到与数据部门讨论的过程中,这些经历其实让我对数据分析埋下了一颗向往的种子的;我觉得数据是一个非常有意思的一个事情;这是一个很考验能力的工作;这是一个需要观察思考能力、快速了解业务能力、表达能力和持续不断学习能力的岗位,另外所产生的价值其实也是无法衡量的,所以我是很向往的;机遇的话,说来也巧,我是当时领导的一位朋友,需要招这么一个岗位,需要有一定信任度的人,正好我领导呢一来是了解我的长处,二来也是了解我的意向,所以向他推荐了我;然后我就如愿以偿的拿到了这个岗位。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20