京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据清洗是数据处理中不可或缺的一个步骤,它可以去除数据中的错误和异常值,使得数据更加准确、可靠、适用于后续分析。下面将介绍数据清洗的具体流程。
收集数据 首先需要收集原始数据,可以通过多种方式获得,例如采集实验数据、爬取网络数据、获取公司内部数据等。
数据预览 在进行数据清洗之前,需要先对数据进行初步的观察和分析,了解数据的基本情况,包括数据类型、大小、格式、列名、行列数等。这可以帮助我们更好地理解数据,为后续的数据清洗和分析做好准备。
缺失值处理 缺失值是指数据中存在某些值没有被记录、测量或采集到,通常用NaN、NULL或NA表示。在进行数据清洗时,需要处理缺失值。处理方法包括填充缺失值、删除缺失值、插值法等。具体选择哪种方法取决于具体情况和数据类型。
异常值处理 异常值是指与其他观测值明显不同的观测值,可能是由于数据录入错误、测量仪器故障或人为操作等原因引起的。在数据分析中,异常值可能会对结果产生负面影响,因此需要进行异常值处理。处理方法包括删除异常值、替换为其他值、平滑处理等。
重复值处理 重复值是指在数据集中出现了相同的记录。重复值可能是由于数据源信息提交错误或重复采集而产生的。如果数据集中存在重复值,则需要对其进行处理,以避免影响分析结果。处理方法包括删除重复记录、去除完全重复的行、合并重复的行等。
数据类型转换 在进行数据清洗过程中,有时候需要将数据类型进行转换,使之更加适用于后续的分析。例如,将字符型数据转换为数值型数据、日期格式转换为时间戳格式等。
数据标准化 数据标准化是指将数据按照一定规则进行归一化或缩放,以便于不同尺度、不同量级的数据可以进行比较和分析。常用的方法包括Z-score标准化、MinMax标准化、log变换等。
数据筛选和子集提取 有时候,我们只需要分析数据集的某些部分,或者要对数据进行进一步剪裁。这时候,就需要进行数据筛选和子集提取。具体方法包括根据条件进行子集提取、按列进行选择或删除等。
数据整合和变换 在进行数据清洗时,有时候需要将多个数据集进行整合和变换,以便于后续的分析。例如,将多个表格进行合并、对数据进行聚合和透视等。
数据保存 最后,当完成了数据清洗后,需要将结果保存下来,以备后续分析使用。可以将处理后的数据保存为CSV、Excel、JSON等格式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06