京公网安备 11010802034615号
经营许可证编号:京B2-20210330
聚类分析是一种常用的数据分析方法,它可以将相似性较高的样本归为一类,并将不同类别的样本区分开来。在SPSS中,聚类分析包括两种连接方式:组内连接和组外连接。这两种连接方式有着不同的计算方法和应用场景。
一、组内连接
组内连接是指在聚类分析中,对于同一簇内的样本之间进行距离度量,并取其平均值作为该簇的代表性点与其他簇进行比较。具体来说,组内连接采用的是最短距离法(single linkage)、最长距离法(complete linkage)或者平均距离法(average linkage)。
最短距离法:该方法计算的是每个簇中距离最近的两个样本之间的距离。即假设簇A和簇B各有n个样本,则计算组内距离时需要计算A中的每个样本与B中的每个样本之间的距离,然后取其中最小值作为组内距离。
最长距离法:该方法计算的是每个簇中距离最远的两个样本之间的距离。即假设簇A和簇B各有n个样本,则计算组内距离时需要计算A中的每个样本与B中的每个样本之间的距离,然后取其中最大值作为组内距离。
平均距离法:该方法计算的是每个簇中所有样本之间距离的平均值。即假设簇A和簇B各有n个样本,则计算A中每个样本与B中每个样本之间的距离,然后将这些距离求和并除以n^2得到组内距离。
二、组外连接
组外连接是指在聚类分析中,对于不同簇之间进行距离度量,并取其平均值作为不同簇之间的距离。具体来说,组外连接采用的是类平均法(between-groups linkage)。
类平均法计算的是不同簇之间所有样本之间距离的平均值。即假设簇A和簇B各有n1和n2个样本,则计算A中每个样本与B中每个样本之间的距离,然后将这些距离求和并除以n1*n2得到不同簇之间的距离。
三、差别比较
组内连接和组外连接的计算方式不同,因此它们在聚类分析中的应用场景也不同。
组内连接主要应用于提高同一簇内样本之间的相似性,即将相似度较高的样本归为同一簇。最短距离法和平均距离法适合于样本分布比较密集的情况,而最长距离法则适合于样本分布比较稀疏的情况。
组外连接主要应用于不同簇之间的区分,即将相似度较低的样本划分到不同簇中。类平均法适合于样本分布比较均匀的情况。
需要注意的是,选择不同的连接方式会影响聚类结果的稳定性和可解释性,在
选择连接方式时需要根据实际问题和数据特点进行权衡。
此外,聚类分析还需要考虑其他方面的影响因素,如距离度量方法、聚类数目等。在选择距离度量方法时,需要根据数据类型和数据特点来选择,如欧氏距离适合于连续型数据,曼哈顿距离适合于分类变量等。而在确定聚类数目时,需要结合相关的统计指标(如轮廓系数、Calinski-Harabasz指数等)来评估聚类结果的质量,并选择最优的聚类数目。
总之,聚类分析是一种强大的数据分析方法,可以帮助我们发现数据中的潜在模式和规律。在使用SPSS进行聚类分析时,需要注意不同连接方式的计算方法和应用场景,并根据实际情况选择合适的参数组合以获得更加准确和可靠的聚类结果。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12