京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SQLite是一种轻量级的关系型数据库,它被广泛用于嵌入式设备和小型应用程序中。Python中的Pandas库提供了一个简单而强大的接口来处理SQLite数据库。
在本文中,我们将探讨如何使用Python和Pandas来连接、查询和修改SQLite数据库。我们将从安装必要的软件开始,然后介绍基本的Pandas操作,最后演示如何使用SQLite作为数据存储。
首先,我们需要确保我们已经安装了Python和Pandas库。如果您还没有这些软件,请按照下面的步骤进行安装:
在我们开始连接SQLite数据库之前,我们还需要安装SQLite驱动程序。有几个选项可供选择,但我建议使用sqlite3模块,因为它与Python标准库捆绑在一起,所以无需额外安装。
如果您使用的是较新的Python版本,则可能无需安装任何东西。否则,请在命令行中键入以下内容:
pip install pysqlite3
一旦我们完成了安装,就可以使用Pandas连接到SQLite数据库了。下面是一个基本的例子:
import pandas as pd import sqlite3 # 创建一个连接对象 conn = sqlite3.connect('example.db') # 从数据库中读取数据并转换为DataFrame对象 df = pd.read_sql_query("SELECT * FROM my_table", conn) # 关闭连接 conn.close()
在这个例子中,我们首先创建了一个名为example.db的SQLite数据库的连接对象。然后,我们使用pd.read_sql_query()函数将一个SQL查询结果转换为Pandas DataFrame对象。最后,我们关闭了与数据库的连接。
请注意,pd.read_sql_query()函数接受两个参数:SQL查询和连接对象。如果您有一个更复杂的查询,可以直接将查询字符串传递给该函数。
一旦我们成功连接到SQLite数据库,我们就可以在Pandas DataFrame中执行各种操作了。以下是一些例子:
# 选择特定列 df[['col1', 'col2']] # 过滤行 df[df['col1'] > 10] # 排序 df.sort_values('col1')
# 增加新列 df['new_col'] = df['col1'] + df['col2'] # 替换值 df.loc[df['col1'] == 10, 'col2'] = 0 # 删除行 df.drop(index=[0, 1])
# 计算总和 df.sum() # 按列分组,并计算平均值 df.groupby('col1').mean()
上面这些是Pandas中最基本的操作,但它们足以处理大多数数据集。
最后,我们将演示如何使用SQLite作为数据存储。要创建一个新表,请执行以下操作:
import sqlite3 # 创建一个连接对象 conn = sqlite3.connect('example.db') # 创建一个游标对象 c = conn.cursor() # 执行SQL语句来创建一个新表 c.execute('''CREATE TABLE my_table
(id INTEGER PRIMARY KEY,
col1 INTEGER,
col2 TEXT)''') # 提交更改并关闭连接 conn.commit()
conn.close()
在上面的例子中,我们首先创建了一个连接到example.db数据库的连接对象。然后,我们创建了一个游标对象,该对象用于执行SQL命令。接下来
,我们使用execute()方法执行了一条SQL命令来创建名为my_table的新表,该表包含三个列。最后,我们提交更改并关闭连接。
在表中插入数据也很简单:
import sqlite3 # 创建一个连接对象 conn = sqlite3.connect('example.db') # 创建一个游标对象 c = conn.cursor() # 插入一行数据 c.execute("INSERT INTO my_table (col1, col2) VALUES (?, ?)", (10, 'hello')) # 提交更改并关闭连接 conn.commit()
conn.close()
在上面的例子中,我们使用execute()方法来插入一行数据到my_table表中。我们使用占位符?和元组(10, 'hello')来传递值。
最后,要从表中检索数据,请使用与前面示例中相同的代码。您只需更新查询字符串即可:
import pandas as pd import sqlite3 # 创建一个连接对象 conn = sqlite3.connect('example.db') # 从数据库中读取数据并转换为DataFrame对象 df = pd.read_sql_query("SELECT * FROM my_table", conn) # 关闭连接 conn.close()
这将检索整个my_table表的所有行和列,并将其转换为Pandas DataFrame对象。
本文介绍了如何使用Python和Pandas处理SQLite数据库。我们首先安装了必要的软件,然后演示了如何连接到数据库,并使用Pandas执行各种操作。最后,我们展示了如何使用SQLite作为数据存储,并插入和检索数据。
SQLite是一种轻量级的数据库,但它非常强大。结合Python和Pandas,可以使用SQLite来处理各种类型的数据集。这些技术可用于许多应用程序领域,例如数据科学、Web开发和物联网设备。
数据库知识对于数据分析工作至关重要,其中 SQL 更是数据获取与处理的关键技能。如果你想进一步提升自己在数据分析领域的能力,学会灵活运用 SQL 进行数据挖掘与分析,那么强烈推荐你学习《SQL 数据分析极简入门》
学习入口:https://edu.cda.cn/goods/show/3412?targetId=5695&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30